STATISTICS

Viewed30

Downloads25

Visual Detection of Steel Surface Defects Based on Transformer and Multi-attention
[1]HAN Huijian,XING Huaiyu,ZHANG Yunfeng,et al.Visual Detection of Steel Surface Defects Based on Transformer and Multi-attention[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):69-76.[doi:10.13705/j.issn.1671-6833.2025.05.009]
Copy
References:
[1]REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2025-02-08]. https:∥doi.org/10.48550/arXiv.1804.02767. 
[2]BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2025-02-08]. https:∥doi. org/ 10.48550/arXiv.2004.10934. 
[3]REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137-1149. 
[4]LIU Z, HU H, LIN Y T, et al. Swin Transformer V2: scaling up capacity and resolution[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11999-12009. 
[5]FERGUSON M K, RONAY A, LEE Y T, et al. Detection and segmentation of manufacturing defects with convolutional neural networks and transfer learning[J]. Smart and Sustainable Manufacturing Systems, 2018, 2(1): 137-164. 
[6]FU G Z, ZHANG Z G, LE W W, et al. A multi-scale pooling convolutional neural network for accurate steel surface defects classification[J]. Frontiers in Neurorobotics, 2023, 17: 1096083. 
[7]HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504. 
[8]LIU R Q, HUANG M, GAO Z M, et al. MSC-DNet: an efficient detector with multi-scale context for defect detection on strip steel surface[J]. Measurement, 2023, 209: 112467. 
[9]CARION N, MASSA F, SYNNAEVE G, et al. End-toend object detection with Transformers[C]∥Computer Vision-ECCV 2020.Cham: Springer, 2020: 213-229. 
[10] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection [EB/OL]. (2020-10-08)[2025-02-08]. https:∥ doi.org/10.48550/arXiv.2010.04159. 
[11] LIU S L, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[EB/OL]. (2022-06-28)[2025-02-08]. https:∥doi. org/ 10.48550/arXiv.2201.12329. 
[12] LI F, ZHANG H, LIU S, et al. DN-DETR: accelerate DETR training by introducing query denoising[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(4):2239-2251. 
[13] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[EB/OL]. (2022-03-07)[2025-02-08]. https:∥doi.org/10.48550/arXiv.2203.03605. 
[14]WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]∥2020 IEEE/CVF Conference onComputer Vision and Pattern Recognition. Piscataway: IEEE , 2020: 11531-11539. 
[15] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[EB/OL].(2020-0526)[2025-02-08]. https:/ /doi. org/10.48550/arXiv. 2005.12872. 
[16] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2017: 936-944. 
[17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018: 7132-7141. 
[18]肖进胜, 赵陶, 周剑, 等. 基于上下文增强和特征提纯的小目标检测网络[J]. 计算机研究与发展, 2023, 60(2): 465-474. 
XIAO J S, ZHAO T, ZHOU J, et al. Small target detection network based on context augmentation and feature refinement[J]. Journal of Computer Research and Development, 2023, 60(2): 465-474. 
[19]魏明军, 王镆涵, 刘亚志, 等. 基于特征融合和混合注意力的小目标检测[J]. 郑州大学学报(工学版), 2024, 45(3): 72-79. 
WEI M J, WANG M H, LIU Y Z, et al. Small object detection based on feature fusion and mixed attention[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(3): 72-79. 
[20]薛均晓, 武雪程, 王世豪, 等. 基于改进YOLOv4的自然人群口罩佩戴检测方法[J]. 郑州大学学报(工学版), 2022, 43(4): 16-22. 
XUE J X, WU X C, WANG S H, et al. A method on mask wearing detection of natural population based on improved YOLOv4[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(4): 16-22. 
[21]WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for realtime object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. 
[22] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[EB/OL]. (2023-05-17) [2025-02-08]. https:∥doi. org/10.48550/ arXiv.2305.09972. 
[23]WANG A, CHEN H, LIU L H, et al. YOLOv10: realtime end-to-end object detection[EB/OL]. (2024-0523) [2025-02-08]. https:∥doi. org/10.48550/ arXiv.2405.14458. 
[24] ROH B, SHIN J, SHIN W, et al. Sparse DETR: efficient end-to-end object detection with learnable sparsity [EB/OL]. (2021-11-29)[2025-02-08]. https:∥ doi.org/10.48550/arXiv.2111.14330. 
[25] CHENG X, YU J B. RetinaNet with difference channel attention and adaptively spatial feature fusion for steel surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 2503911.
Similar References:
Memo

-

Last Update: 2025-09-19
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)