STATISTICS

Viewed185

Downloads235

Steel Surface Defect Detection Based on Improved YOLOv5 Algorithm
[1]YAN Yu,JING Yuchao,SHI Mengxiang,et al.Steel Surface Defect Detection Based on Improved YOLOv5 Algorithm[J].Journal of Zhengzhou University (Engineering Science),2024,45(pre):2-.[doi:10.13705/j.issn.1671-6833.2025.01.007]
Copy
References:

[1] WEN X, SHAN J, HE Y, et al. Steel surface defect recognition: a survey[J]. Coatings, 2023, 13(1):1-30.

[2] 刘杰 . 探究钢铁表面缺陷检测的研究与实现 [ J] . 中国设备工程 , 2023(6) : 172-174. LIU J. Research and implementation of steel surface defect detection[J]. China Plant Engineering, 2023(6): 172-174.

[3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

[4] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [ EB / OL ] . (2015- 04 - 10 ) [ 2024 - 04 - 19 ] . https:∥arxiv. org / abs/ 1409. 1556.

[5] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [ C] ∥2015 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR) . Piscataway: IEEE, 2015: 1-9.

[6] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [ C] ∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway: IEEE, 2016: 770-778.

[7] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [ EB / OL] . ( 2017 - 04 - 19) [ 2024 - 04-19] . http:∥arxiv. org / abs/ 1704. 04861.

[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]∥14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.

[9] REDMON J, FARHADI A. YOLOv3: an incremental improvement[ EB / OL] . ( 2018 - 04 - 08) [ 2024 - 04 - 19] . http:∥arxiv. org / abs/ 1804. 02767.

[10] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR) . Piscataway: IEEE, 2017: 6517-6525.

[11] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors [ C] ∥2023 IEEE / CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway: IEEE, 2023: 7464-7475.

[12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

[13] DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks [ EB / OL] . (2023- 12 - 11 ) [ 2024 - 04 - 19 ] . http:∥arxiv. org / abs/ 1605. 06409.

[14] 阎馨 , 杨月川 , 屠乃威 . 基于改进 SSD 的钢材表面缺陷检测 [ J] . 现代制造工程 , 2023(5) : 112-120.

YAN X, YANG Y C, TU N W. Steel surface defect detection based on improved SSD[ J] . Modern Manufacturing Engineering, 2023(5) : 112-120.

[15] 院老虎 , 常玉坤 , 刘家夫 . 基于改进 YOLOv5s 的雾天场景车辆检测方法 [ J] . 州大学学报 (工学版 ) , 2023, 44(3) : 35-41.

YUAN L H, CHANG Y K, LIU J F. Vehicle detection method based on improved YOLOv5s in foggy scene[ J] . Journal of Zhengzhou University ( Engineering Science) , 2023, 44(3) : 35-41.

[16] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning [C]∥ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing ( ICASSP) . Piscataway: IEEE, 2023: 1-5.

[17] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression [ EB / OL ] . ( 2022 - 05 - 25 ) [2024-04-19] . https:∥arxiv. org / abs/ 2205. 12740.


Similar References:
Memo

-

Last Update: 2024-10-10
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)