STATISTICS

Viewed100

Downloads61

Multimodal Medical Image Fusion Based on GAN and Multiscale Spatial Attention
[1]LIN Yusong,,et al.Multimodal Medical Image Fusion Based on GAN and Multiscale Spatial Attention[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):1-8.[doi:10.13705/j.issn.1671-6833.2025.01.001]
Copy
References:
[1]HUANG B, YANG F, YIN M X, et al. A review of multimodal medical image fusion techniques[J]. Computational and Mathematical Methods in Medicine, 2020, 2020: 8279342. 
[2]AZAM M A, KHAN K B, SALAHUDDIN S, et al. A review on multimodal medical image fusion: compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics[J]. Computers in Biology and Medicine, 2022, 144: 105253. 
[3]PIELLA G. A general framework for multiresolution image fusion: from pixels to regions[J]. Information Fusion, 2003, 4(4): 259-280. 
[4]GUO P, XIE G Q, LI R F, et al. Multimodal medical image fusion with convolution sparse representation and mutual information correlation in NSST domain[J]. Complex & Intelligent Systems, 2023, 9(1): 317-328. 
[5]YIN M, LIU X N, LIU Y, et al. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1): 49-64. 
[6]ZHU Z Q, ZHENG M Y, QI G Q, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain[J]. IEEE Access, 2019, 7: 20811-20824. 
[7]DOGRA A, KUMAR S. Multi-modality medical image fusion based on guided filter and image statistics in multidirectional shearlet transform domain[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (9): 12191-12205. 
[8] ZHANG Y, LIU Y, SUN P, et al. IFCNN: a general image fusion framework based on convolutional neural network [J]. Information Fusion, 2020, 54: 99-118. 
[9] LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. 
[10] FU J, LI W S, DU J, et al. A multiscale residual pyramid attention network for medical image fusion[J]. Biomedical Signal Processing and Control, 2021, 66: 102488. 
[11]许光宇, 陈浩宇, 张杰. 双路径双鉴别器生成对抗网络的红外与可见光图像融合[J/OL]. 计算机辅助设计与图形学学报,1-14(2024-02-06)[2024-04-07]. http: ∥kns. cnki. net/kcms/detail/11.2925. TP. 20240204.1728.061.html. 
XU G Y, CHEN H Y, ZHANG J. Infrared and visible image fusion based on dual-path and dual-discriminator generation adversarial network [J/OL]. Journal of Computer-Aided Design & Computer Graphics,1-14(202402-06)[2024-04-07].http:∥kns. cnki.net/kcms/detail/11.2925.TP.20240204.1728.061.html. 
[12] MA J Y, YU W, LIANG P W, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. 
[13] ZHAO C, WANG T F, LEI B Y. Medical image fusion method based on dense block and deep convolutional generative adversarial network[J]. Neural Computing and Applications, 2021, 33(12): 6595-6610. 
[14] MA J Y, XU H, JIANG J J, et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995. 
[15] ZHOU T, LI Q, LU H L, et al. GAN review: models and medical image fusion applications[J]. Information Fusion, 2023, 91: 134-148. 
[16]肖儿良, 林化溪, 简献忠. 基于生成对抗网络探索潜在空间的医学图像融合算法[J]. 信息与控制, 2021, 50(5): 538-549.
XIAO E L, LIN H X, JIAN X Z. Medical image fusion algorithm adopting generative adversarial network to explore latent space[J]. Information and Control, 2021, 50 (5): 538-549. 
[17] LI H C, XIONG P F, AN J, et al. Pyramid attention network for semantic segmentation[EB/OL]. (2018-11-25) [2024-04-07].https:∥arxiv.org/abs/1805.10180. 
[18] LIU Y, WANG L, LI H F, et al. Multi-focus image fusion with deep residual learning and focus property detection[J]. Information Fusion, 2022, 86: 1-16. 
[19]尹海涛, 岳勇赢. 基于半监督学习和生成对抗网络的医学图像融合算法[J]. 激光与光电子学进展, 2022, 59(22): 245-254. 
YIN H T, YUE Y Y. Medical image fusion based on semisupervised learning and generative adversarial network[J]. Laser & Optoelectronics Progress, 2022, 59 (22): 245-254. 
[20] LI X X, GUO X P, HAN P F, et al. Laplacian redecomposition for multimodal medical image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6880-6890. 
[21] XU H, MA J Y, JIANG J J, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518. 
[22] XU H, MA J Y. EMFusion: an unsupervised enhanced medical image fusion network[J]. Information Fusion, 2021, 76: 177-186. 
[23] LI J W, LIU J Y, ZHOU S H, et al. GeSeNet: a general semantic-guided network with couple mask ensemble for medical image fusion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023,1: 14. 
[24]刘帅奇, 王洁, 安彦玲, 等. 基于CNN的非下采样剪切波域多聚焦图像融合[J]. 郑州大学学报(工学版), 2019, 40(4): 36-41. 
LIU S Q, WANG J, AN Y L, et al. Multi-focus image fusion based on CNN in non-sampled shearlet domain [J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(4): 36-41. XIAO E L, LIN H X, JIAN X Z. Medical image fusion
Similar References:
Memo

-

Last Update: 2024-12-30
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)