STATISTICS

Viewed28

Downloads22

A Review of Vehicle Trajectory Prediction Based on Deep Learning
[1]LIU Kai,WANG Jiaqin,LI Hantao.A Review of Vehicle Trajectory Prediction Based on Deep Learning[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):77-89.[doi:10.13705/j.issn.1671-6833.2025.02.006]
Copy
References:
[1]JU C, WANG Z, LONG C, et al. Interaction-aware Kalman neural networks for trajectory prediction[C]∥2020 IEEE Intelligent Vehicles Symposium. Piscataway:IEEE, 2020: 1793-1800. 
[2]LIU P F, FAN W. Extreme gradient boosting (XGBoost) model for vehicle trajectory prediction in connected and autonomous vehicle environment[J]. Promet-Traffic & Transportation, 2021, 33(5): 767-774. 
[3]WANG J, WANG P, ZHANG C, et al. F-Net: fusion neural network for vehicle trajectory prediction in autonomous driving[C]∥2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 4095-4099. 
[4]KATARIYA V, BAHARANI M, MORRIS N, et al. DeepTrack: lightweight deep learning for vehicle trajectory prediction in highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 1892718936. 
[5]GULZAR M, MUHAMMAD Y, MUHAMMAD N. A survey on motion prediction of pedestrians and vehicles for autonomous driving[J]. IEEE Access, 2021, 9: 137957-137969. 
[6]HU X H, ZHENG M. Research progress and prospects of vehicle driving behavior prediction[J]. World Electric Vehicle Journal, 2021, 12(2): 88. 
[7]SHENG Z H, XU Y W, XUE S B, et al. Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 17654-17665.
[8]LIU X L, WANG Y F, JIANG K, et al. Interactive trajectory prediction using a driving risk map-integrated deep learning method for surrounding vehicles on highways [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19076-19087. 
[9]张三川, 马啸. 基于轨迹加权预测的主动避撞安全距离模型及算法[J]. 郑州大学学报(工学版), 2022, 43(3): 104-110. 
ZHANG S C, MA X. A safe distance model and algorithm for active collision avoidance based on weighted prediction of trajectory[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 104-110. 
[10] ZHAO Z Y, FANG H W, JIN Z, et al. GISNet: graphbased information sharing network for vehicle trajectory prediction[C]∥2020 International Joint Conference on Neural Networks. Piscataway:IEEE, 2020: 1-7. 
[11]WOO H, JI Y, KONO H, et al. Lane-change detection based on vehicle-trajectory prediction[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 1109-1116. 
[12] DAI S Z, LI Z H, LI L, et al. A flexible and explainable vehicle motion prediction and inference framework combining semi-supervised AOG and ST-LSTM[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 840-860.
[13] CHEN J N, WANG Y, WU R H, et al. Spatial-temporal graph neural network for interaction-aware vehicle trajectory prediction[C]∥2021 IEEE 17th International Conference on Automation Science and Engineering. Piscataway: IEEE, 2021: 2119-2125. 
[14] FENG X D, CEN Z P, HU J M, et al. Vehicle trajectory prediction using intention-based conditional variational autoencoder[C]∥2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 3514-3519. 
[15] CHOI D, YIM J, BAEK M, et al. Machine learningbased vehicle trajectory prediction using V2V communications and on-board sensors[J]. Electronics, 2021, 10 (4): 420. 
[16] CHEN L, ZHOU Q Y, CAI Y F, et al. CAE-GAN: a hybrid model for vehicle trajectory prediction[J]. IET Intelligent Transport Systems, 2022, 16(12): 1682-1696. 
[17] JO E, SUNWOO M, LEE M. Vehicle trajectory prediction using hierarchical graph neural network for considering interaction among multimodal maneuvers[J]. Sensors, 2021, 21(16): 5354. 
[18] BERNTORP K, HOANG T, DI CAIRANO S. Motion planning of autonomous road vehicles by particle filtering[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2): 197-210. 
[19] MESSAOUD K, DEO N, TRIVEDI M M, et al. Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation[C]∥2021 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2021: 165-170. 
[20] CUI H G, RADOSAVLJEVIC V, CHOU F C, et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks[C]∥2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 2090-2096. 
[21] ZHOU W, YANG L, YING T X, et al. Velocity prediction of intelligent and connected vehicles for a traffic light distance on the urban road[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11): 4119-4133. 
[22] ZHANG K P, FENG X L, WU L, et al. Trajectory prediction for autonomous driving using spatial-temporal graph attention transformer[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 2234322353. 
[23] LIN L, LI W Z, BI H K, et al. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(2): 197-208. 
[24] YU J, ZHOU M, WANG X, et al. A dynamic and static context-aware attention network for trajectory prediction [J]. ISPRS International Journal of Geo-Information, 2021, 10(5): 336. 
[25] ALTCHÉ F, DE LA FORTELLE A. An LSTM network for highway trajectory prediction[C]∥2017 IEEE 20th International Conference on Intelligent Transportation Systems. Piscataway:IEEE, 2017: 353-359. 
[26] CHEN X B, ZHANG H J, ZHAO F, et al. Intentionaware vehicle trajectory prediction based on spatial-temporal dynamic attention network for Internet of vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19471-19483. 
[27]WU J B, CHEN X H, BIE Y M, et al. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification[J]. Accident Analysis & Prevention, 2023, 180: 106907. 
[28]WANG J Q, WANG S C. Geographical information enhanced recognition of traffic modes and behavior patterns [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3777-3782. 
[29] KIM B, KANG C M, KIM J, et al. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network[C]∥2017 IEEE 20th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2017: 399-404. 
[30] XING Y, LV C, CAO D P. Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1341-1352. 
[31] ZHOU H, REN D C, XIA H X, et al. AST-GNN: an attention-based spatio-temporal graph neural network for interaction-aware pedestrian trajectory prediction[J]. Neurocomputing, 2021, 445: 298-308. 
[32] MO X Y, HUANG Z Y, XING Y, et al. Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9554-9567. 
[33] GUI Z M, WANG X, LI W Z. Dynamic perception-based vehicle trajectory prediction using a memory-enhanced spatio-temporal graph network[J]. ISPRS International Journal of Geo-Information, 2024, 13(6): 172. 
[34] LI J C, MA H B, ZHANG Z H, et al. Spatio-temporal graph dual-attention network for multi-agent prediction and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10556-10569. 
[35] SINGH D, SRIVASTAVA R. Graph neural network with RNNs based trajectory prediction of dynamic agents for autonomous vehicle[J]. Applied Intelligence, 2022, 52(11): 12801-12816. 
[36] MO X Y, XING Y, LV C. Graph and recurrent neural network-based vehicle trajectory prediction for highway driving[C]∥2021 IEEE International Intelligent Transportation Systems Conference. Piscataway:IEEE, 2021: 1934-1939. 
[37] LI X, ROSMAN G, GILITSCHENSKI I, et al. Vehicle trajectory prediction using generative adversarial network with temporal logic syntax tree features[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3459-3466. 
[38] HEGDE C, DASH S, AGARWAL P. Vehicle trajectory prediction using GAN[C]∥2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud). Piscataway: IEEE, 2020: 502-507. 
[39] ROY D, ISHIZAKA T, MOHAN C K, et al. Vehicle trajectory prediction at intersections using interaction based generative adversarial networks[C]∥2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 2318-2323. 
[40] GUO H Y, MENG Q Y, ZHAO X M, et al. Mapenhanced generative adversarial trajectory prediction method for automated vehicles[J]. Information Sciences, 2023, 622: 1033-1049. 
[41] NEUMEIER M, BOTSCH M, TOLLKÜHN A, et al. Variational autoencoder-based vehicle trajectory prediction with an interpretable latent space[C]∥2021 IEEE International Intelligent Transportation Systems Conference. Piscataway:IEEE, 2021: 820-827.
[42] LI C N, FENG G W, LI Y N, et al. DiffTAD: denoising diffusion probabilistic models for vehicle trajectory anomaly detection [J]. Knowledge-Based Systems, 2024, 286: 111387. 
[43] LI Z Y, LIANG H W, WANG H Q, et al. A multi-modal vehicle trajectory prediction framework via conditional diffusion model: a coarse-to-fine approach[J]. Knowledge-Based Systems, 2023, 280: 110990. 
[44] TANG Y J, HE H W, WANG Y. Hierarchical vector transformer vehicle trajectories prediction with diffusion convolutional neural networks [J]. Neurocomputing, 2024, 580: 127526. 
[45]WESTNY T, OLOFSSON B, FRISK E. Diffusion-based environment-aware trajectory prediction [EB/OL]. (2024-03-18)[2024-09-03]. https:∥doi. org/10. 48550/arXiv.2403.11643. 
[46] HAJRASOULIHA A, GHAHFAROKHI B S. Dynamic geo-based resource selection in LTE-V2V communications using vehicle trajectory prediction[J]. Computer Communications, 2021, 177: 239-254. 
[47] OMAMA M, INANI P, PAUL P, et al. ALT-Pilot: autonomous navigation with language augmented topometric maps [EB/OL]. (2023-10-03)[2024-09-03].https:∥ doi.org/10.48550/arXiv.2310.02324. 
[48] PENG M X, GUO X S, CHEN X D, et al. LC-LLM: explainable lane-change intention and trajectory predictions with large language models [EB/OL]. (2024-03-27) [2024-09-03]. http:∥arxiv.org/abs/2403.18344. 
[49] LAN Z X, LI H B, LIU L S, et al. Traj-LLM: a new exploration for empowering trajectory prediction with pretrained large language models [EB/OL]. (2024-0508)[2024-09-03]. https:∥doi. org/10.48550/arXiv. 2405.04909. 
[50] LI X, LIU E L, SHEN T Y, et al. ChatGPT-based scenario engineer: a new framework on scenario generation for trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(3): 4422-4431. 
[51]崔建明, 蔺繁荣, 张迪, 等. 基于有向图的强化学习自动驾驶轨迹预测[J]. 郑州大学学报(工学版), 2023, 44(5): 53-61. 
CUI J M, LIN F R, ZHANG D, et al. Reinforcement learning autonomous driving trajectory prediction based on directed graph[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(5): 53-61.
Similar References:
Memo

-

Last Update: 2025-09-19
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)