[1]CHEN S C, CHEN Y R, TZENG W G. Effective botnet detection through neural networks on convolutional features[C]∥2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/ 12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE). Piscataway: IEEE, 2018: 372-378. [2]SRINIVASAN S, P D. Enhancing the security in cyberworld by detecting the botnets using ensemble classification based machine learning[J]. Measurement: Sensors, 2023, 25: 100624.
[3]汪祖民, 王冬昊, 梁霞, 等. 基于DBSCAN_GAN_XGBoost的网络入侵检测方法[J]. 郑州大学学报(工学版), 2022, 43(3): 44-51.
WANG Z M, WANG D H, LIANG X, et al. Network intrusion detection method based on DBSCAN_GAN_XGBoost[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 44-51.
[4]HAQ M A. DBoTPM: a deep neural network-based botnet prediction model[J]. Electronics, 2023, 12(5): 1159.
[5]ZHAO J, LIU X D, YAN Q B, et al. Multi-attributed heterogeneous graph convolutional network for bot detection[J]. Information Sciences, 2020, 537: 380-393.
[6]JOSHI H P, DUTTA R. A reinforcement approach for detecting P2P botnet communities in dynamic communication graphs[C]∥ICC 2022-IEEE International Conference on Communications. Piscataway: IEEE, 2022: 56-61.
[7]ALSENTZER E, FINLAYSON S G, LI M M, et al. Subgraph neural networks[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 8017-8029.
[8]LI J X, SUN Q Y, PENG H, et al. Adaptive subgraph neural network with reinforced critical structure mining [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8063-8080.
[9]ZHANG Z, ZHAO L. Unsupervised deep subgraph anomaly detection[C]∥2022 IEEE International Conference on Data Mining (ICDM). Piscataway: IEEE, 2023: 753-762.
[10] VELASCO-MATA J, GONZÁLEZ-CASTRO V, FIDALGO E, et al. Real-time botnet detection on large network bandwidths using machine learning[J]. Scientific Reports, 2023, 13(1): 1-10.
[11] SHAHHOSSEINI M, MASHAYEKHI H, REZVANI M. A deep learning approach for botnet detection using raw network traffic data[J]. Journal of Network and Systems Management, 2022, 30(3): 1-23.
[12] TULASI RATNAKAR P, UDAY VISHAL N, SAI SIDDHARTH P, et al. Detection of IoT botnet using recurrent neural network[C]∥ Intelligent Data Communication Technologies and Internet of Things. Cham: Springer, 2022: 869-884.
[13] ZHOU J W, XU Z Y, RUSH A M, et al. Automating botnet detection with graph neural networks[EB/OL]. (2022-03-13)[2024-02-10]. https:∥arxiv. org/ abs/2003.06344.
[14] BEIGI E B, JAZI H H, STAKHANOVA N, et al. Towards effective feature selection in machine learningbased botnet detection approaches[C]∥2014 IEEE Conference on Communications and Network Security. Piscataway: IEEE, 2014: 247-255.
[15] ENGELEN G, RIMMER V, JOOSEN W. Troubleshooting an intrusion detection dataset: the CICIDS2017 case study[C]∥2021 IEEE Security and Privacy Workshops (SPW). Piscataway: IEEE, 2021: 7-12.
[16] TRAN D, MAC H, TONG V, et al. A LSTM based framework for handling multiclass imbalance in DGA botnet detection[J]. Neurocomputing, 2018, 275: 2401-2413.
[17] MEIDAN Y, BOHADANA M, MATHOV Y, et al. NBaIoT—network-based detection of IoT botnet attacks using deep autoencoders[J]. IEEE Pervasive Computing, 2018, 17(3): 12-22.
[18] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoderdecoder for statistical machine translation[EB/OL]. (2014-09-03)[2024-02-10]. https:∥arxiv. org/ abs/1406.1078.
[19] CARPENTER J, LAYNE J, SERRA E, et al. Detecting botnet nodes via structural node representation learning [C]∥2021 IEEE International Conference on Big Data (Big Data). Piscataway: IEEE, 2022: 5357-5364.
[20] VELI ˇ CKOVIC’ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2024-02-10]. https:∥arxiv.org/abs/1710.10903.
[21] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[EB/OL].(2018-0910)[2024-02-10]. https:∥arxiv.org/abs/1706.02216.