STATISTICS

Viewed2679

Downloads1264

Identification of Butterfly Species in the Wild Based on YOLOv3 and Attention Mechanism
[1]ZHOU Wenjin,LI Fan,XUE Feng.Identification of Butterfly Species in the Wild Based on YOLOv3 and Attention Mechanism[J].Journal of Zhengzhou University (Engineering Science),2022,43(01):34-40.[doi:10.13705/j.issn.1671-6833.2022.01.007]
Copy
References:
[1] 寿建新,周尧,李宇飞.世界蝴蝶分类名录[M].西 安: 陕西科学技术出版社,2006. 
[2] WANG J N,JI L Q,LIANG A P,et al.The identification of butterfly families using content-based image retrieval [J].Biosystems engineering,2012,111( 1) : 24-32. 
[3] LI F,XIONG Y. Automatic identification of butterfly species based on HoMSC and GLCMoIB[J].The visual computer,2018,34( 11) : 1525-1533. 
[4] CHEN X,WANG B,GAO Y S. Gaussian convolution angles: invariant vein and texture descriptors for butterfly species identification [ C ]/ /2020 25th International Conference on Pattern Recognition ( ICPR) .Piscataway: IEEE,2021: 5798-5803. 
[5] 谢娟英,侯琦,史颖欢,等.蝴蝶种类自动识别研究 [J].计算机研究与发展,2018,55( 8) : 1609-1618. 
[6] XIE J Y,LU Y Y,WU Z Z,et al.Investigations of butterfly species identification from images in natural environments[J]. International journal of machine learning and cybernetics,2021,12( 8) : 2431-2442.
 [7] 魏宏彬,张端金,杜广明,等.基于改进型 YOLOv3 的 蔬菜识别算法[J].郑州大学学报( 工学版) ,2020, 41( 2) : 7-12,31.
 [8] REDMON J,FARHADI A. YOLOv3: an incremental improvement[EB/OL]. ( 2018 - 04 - 08) [2021 - 05 - 01]. https: / /arxiv.org /abs/1804. 027672. 
[9] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]/ /2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2018: 7132-7141. 
[10] WOO S,PARK J,LEE J Y,et al.CBAM: convolutional block attention module [ C ]/ /15th European Conference on Computer Vision( ECCV 2018) .Cham: Springer,2018: 3-19. 
[11] LI X,WANG W H,HU X L,et al.Selective kernel networks[C]/ /2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR) .Piscataway:IEEE,2019: 510-519.
 [12] WANG Q L,WU B G,ZHU P F,et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]/ /2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR) .Piscataway: IEEE,2020: 11531-11539. 
[13] HE T,ZHANG Z,ZHANG H,et al. Bag of tricks for image classification with convolutional neural networks [C]/ /2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR) .Piscataway: IEEE,2019: 558-567. 
[14] XIN D J,CHEN Y W,LI J J. Fine-grained butterfly classification in ecological images using squeeze-andexcitation and spatial attention modules[J]. Applied sciences,2020,10( 5) : 1681. 
[15] CAO Y,XU J R,LIN S,et al. GCNet: non-local networks meet squeeze-excitation networks and beyond [C]/ /2019 IEEE/CVF International Conference on Computer Vision Workshop ( ICCVW) . Piscataway: IEEE,2019: 1971-1980. 
[16] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence,2017,39( 6) : 1137 -1149. 
[17] LIU W,ANGUELOV D,ERHAN D,et al. SSD: single shot MultiBox detector[C]/ /ECCV 2016: European Conference on Computer Vision.Cham: Springer,2016: 21-37. 
[18] TAN M X,PANG R M,LE Q V.EfficientDet: scalable and efficient object detection[C]/ /2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR) . Piscataway: IEEE,2020: 10778 -10787. 
[19] BOCHKOVSKIY A,WANG C Y,LIAO H Y MARK. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. ( 2020-04-23) [2021-05-01]. https: / /arxiv.org /abs/2004. 10934.
Similar References:
Memo

-

Last Update: 2022-01-09
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)