STATISTICS

Viewed2635

Downloads1304

Research on Application of Collaborative Public Opinion Fraud Detection Method in Social Network
[1]WU Xiaoyan,LIU Qiang,ZHU Chengzhang.Research on Application of Collaborative Public Opinion Fraud Detection Method in Social Network[J].Journal of Zhengzhou University (Engineering Science),2022,43(02):7-14.[doi:10.13705/j.issn.1671-6833.2022.02.010]
Copy
References:
[1] PANETTA K. Gartner top strategic predictions for 2018 and beyond[EB/OL].( 2019-05-10) [2021-07 - 20]. https: / /www. gartner. com/smarterwithgartner/ gartner-top-strategic-predictions-for-2018-and-beyond /. 
[2] YE J T,AKOGLU L. Discovering opinion spammer groups by network footprints [C]/ /Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer,2015: 267-282. 
[3] HOOI B,SONG H A,BEUTEL A,et al. FRAUDAR: bounding graph fraud in the face of camouflage[C]/ / Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York: ACM,2016: 895-904. 
[4] BEUTEL A,XU W H,GURUSWAMI V,et al. CopyCatch: stopping group attacks by spotting lockstep behavior in social networks[C]/ /Proceedings of the 22nd International Conference on World Wide WebWWW’ 13. Rio de Janeiro,Brazil. New York: ACM, 2013: 119-130. 
[5] SHEHNEPOOR S,SALEHI M,FARAHBAKHSH R,et al. NetSpam: a network-based Spam detection framework for reviews in online social media[J].IEEE transactions on information forensics and security, 2017,12( 7) : 1585-1595. 
[6] LOVISOTTO G,EBERZ S,MARTINOVIC I.Biometric backdoors: a poisoning attack against unsupervised template updating[C]/ /2020 IEEE European Symposium on Security and Privacy. Piscataway: IEEE, 2020: 308-316.
 [7] YOU Z,QIAN T,LIU B. An attribute enhanced domain adaptive model for cold-start spam review detection[C]/ /Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe: COLING,2018: 1884-1895. 
[8] DA Q B,CHENG J R,LI Q,et al. Socially-attentive representation learning for cold-start fraud review detection[C]/ /In National Conference of Theoretical Computer Science. Cham: Springer,2019: 76-91. 
[9] LI Q,WU Q,ZHU C Z,et al.. Unsupervised user behavior representation for fraud review detection with cold-start problem[C]/ /In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer,2019: 222-236. 
[10] LI Q,WU Q,ZHU C Z,et al. An inferable representation learning for fraud review detection with cold-start problem[C]/ /2019 International Joint Conference on Neural Networks ( IJCNN) . Piscataway: IEEE,2019: 1-8. 
[11] ZHU C Z,ZHAO W T,LI Q,et al.Network embeddingbased anomalous density searching for multi-group collaborative fraudsters detection in social media[J]. Computers,materials & continua,2019,60 ( 1) : 317 -333. 
[12] MUKHERJEE A,VENKATARAMAN V,LIU B,et al. What yelp fake review filter might be doing? [C]/ / International AAAI Conference on Web and Social Media.Massachusetts: AAAI,2013: 136-144. 
[13] OTT M,CHOI Y,CARDIE C,et al.Finding deceptive opinion spam by any stretch of the imagination[C]/ / Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Portland: ACLHLT,2011: 309-319. 
[14] 詹海萍.弱信号模体检测的图搜索算法[D].西安: 西安电子科技大学,2010.
 [15] 刘波,何希平.高维数据的特征选择: 理论与算法 [M].北京: 科学出版社,2016. 
[16] LIU S H,HOOI B,FALOUTSOS C. HoloScope: topology-and-spike aware fraud detection[C]/ /Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM,2017: 1539-1548.
Similar References:
Memo

-

Last Update: 2022-02-25
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)