STATISTICS

Viewed62

Downloads102

Dynamic Contrastive Representation Enhancement Approach for Keyphrase Prediction
[1]GENG Xuelian,SONG Mingyang,FENG Yi,et al.Dynamic Contrastive Representation Enhancement Approach for Keyphrase Prediction[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):128-135.[doi:10.13705/j.issn.1671-6833.2025.03.004]
Copy
References:
[1]ZHAI C X, LAFFERTY J. A study of smoothing methods for language models applied to ad hoc information retrieval [J]. ACM SIGIR Forum, 2017, 51(2): 268-276. 
[2]HAMMOUDA K M, MATUTE D N, KAMEL M S. CorePhrase: keyphrase extraction for document clustering[C]∥ LectureNotes in ComputerScience. Berlin: Springer, 2005: 265-274. 
[3]BAI H L, CHEN Z B, LYU M R, et al. Neural relational topic models for scientific article analysis[C]∥Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 27-36. 
[4]WANG Z H, WANG D, LI Q. Keyword extraction from scientific research projects based on SRP-TF-IDF[J]. Chinese Journal of Electronics, 2021, 30(4): 652-657. 
[5]MIHALCEA R, TARAU P. Textrank: bringing order into text[C]∥Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2004: 404-411. 
[6]MENG R, ZHAO S Q, HAN S G, et al. Deep keyphrase generation[EB/OL]. (2021-05-31)[2024-06-05]. http:∥arxiv.org/abs/1704.06879. 
[7]ZHAO G Z, YIN G S, YANG P, et al. Keyphrase generation via soft and hard semantic corrections[C]∥Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2022: 7757-7768. 
[8]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2999-3007. 
[9]HUANG S J, CAI N G, PACHECO P P, et al. Applications of support vector machine (SVM) learning in cancer genomics[J]. Cancer Genomics & Proteomics, 2018, 15 (1): 41-51. 
[10] BENNANI-SMIRES K, MUSAT C, HOSSMANN A, et al. Simple unsupervised keyphrase extraction using sentence embeddings[EB/OL]. (2018-09-05)[2024-0605].http:∥arxiv.org/abs/1801.04470. 
[11] LIANG X N, WU S Z, LI M, et al. Unsupervised keyphrase extraction by jointly modeling local and global context[EB/OL]. (2021-09-15)[2024-06-05].http:∥ arxiv.org/abs/2109.07293. 
[12] ZHANG L H, CHEN Q, WANG W, et al. MDERank: a masked document embedding rank approach for unsupervised keyphrase extraction[EB/OL]. (2023-02-28) [2024-06-05].http:∥arxiv.org/abs/2110.06651. 
[13] CHEN J, ZHANG X M, WU Y, et al. Keyphrase generation with correlation constraints[EB/OL]. (2018-0822)[2024-06-05].http:∥arxiv.org/abs/1808.07185. 
[14] GAO T Y, YAO X C, CHEN D Q. SimCSE: simple contrastive learning of sentence embeddings [EB/OL]. (2022-05-18)[2024-06-05]. http:∥arxiv. org/ abs/2104.08821. 
[15] VAN DEN OORD A, LI Y Z, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. (2018-09-05)[2024-06-05]. http:∥arxiv. org/ abs/1807.03748. 
[16] XU J H, SHAO W, CHEN L H, et al. SimCSE++: improving contrastive learning for sentence embeddings from two perspectives[EB/OL].(2023-10-20)[2024-0605]. https:∥arxiv.org/abs/2305.13192. 
[17] HOU P Y, LI X Y. Improving contrastive learning of sentence embeddings with Focal-InfoNCE[EB/OL]. (2023-10-20) [2024-06-05]. http:∥arxiv. org/ abs/2310.06918. 
[18] LI J C, SHANG J B, MCAULEY J. UCTopic: unsupervised contrastive learning for phrase representations and topic mining[EB/OL]. (2022-02-27)[2024-06-05]. http:∥arxiv.org/abs/2202.13469. 
[19] CAI H, CHEN W H, SHI K H, et al. Keyword extractor for contrastive learning of unsupervised sentence embedding[C]∥Proceedings of the 2022 5th International Conference on Machine Learning and Natural Language Processing.New York: ACM, 2022: 88-93. 
[20] CHOI M, GWAK C, KIM S, et al. SimCKP: simple contrastive learning of keyphrase representations[EB/ OL]. (2023-10-12)[2024-06-05].http:∥arxiv.org/ abs/2310.08221. 
[21] LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[EB/OL]. (2019-10-29)[2024-06-05]. https:∥arxiv. org/ abs/1910.13461. 
[22] CHUANG C Y, ROBINSON J, YEN-CHENL, et al. Debiased contrastive learning[EB/OL]. (2020-10-21) [2024-06-05].http:∥arxiv.org/abs/2007.00224. 
[23] ZHAO G Z, YIN G S, YANG P, et al. Keyphrase generation via soft and hard semantic corrections[C]∥Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Abu Dhabi: EMNLP, 2022: 7757-7768. 
[24] HULTH A. Improved automatic keyword extraction given more linguistic knowledge[C]∥Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing Not Known. Stroudsburg: Association for Computational Linguistics, 2003: 216-223. 
[25] KRAPIVIN M, AUTAEU A, MARCHESE M. Large dataset for keyphrases extraction[EB/OL]. (2008-0501)[2024-06-05]. https:∥iris.unitn. it/bitstream/11572/ 358576/1/disi09055-krapivin-autayeu-marchese. pdf. 
[26] NGUYEN T D, KAN M Y. Keyphrase extraction in scientific publications[C]∥International Conference on Asian Digital Libraries. Berlin: Springer, 2007: 317-326. 
[27] KIM N S, MEDELYAN O, KAN M Y, et al. SemEval2010 task 5?: automatic keyphrase extraction from scientific articles[J]. Language Resources and Evaluation, 2010,47(3): 21-26. 
[28] YUAN X D, WANG T, MENG R, et al. One size does not fit all: generating and evaluating variable number of keyphrases[EB/OL]. (2020-05-12)[2024-06-05]. http:∥arxiv.org/abs/1810.05241. 
[29] CHEN W, GAO Y F, ZHANG J N, et al. Title-guided encoding for keyphrase generation[EB/OL]. (2019-0116)[2024-06-05]. https:∥arxiv.org/abs/1808.08575. 
[30] CHAN H P, CHEN W, WANG L, et al. Neural keyphrase generation via reinforcement learning with adaptive rewards[EB/OL]. (2019-06-10)[2024-06-05].http:∥arxiv.org/abs/1906.04106. 
[31]WU H Q, LIU W, LI L, et al. UniKeyphrase: a unified extraction and generation framework for keyphrase prediction[EB/OL]. (2021-08-31)[2024-06-05].http:∥ arxiv.org/abs/2106.04847. 
[32]WU H Q, MA B, LIU W, et al. Fast and constrained absent keyphrase generation by prompt-based learning [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10): 11495-11503.
Similar References:
Memo

-

Last Update: 2025-05-22
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)