HAN Z F, JING Q M, ZHANG Y K, et al. Review of wind power forecasting methods and new trends[ J] . Power System Protection and Control, 2019, 47( 24) : 178- 187.
[2] GONG M J, YAN C C, XU W, et al. Short-term wind power forecasting model based on temporal convolutional network and Informer[J]. Energy, 2023, 283: 129171.
[3] 涂思嘉, 杨悦荣, 林舜江, 等. 考虑风电不确定性的 交直流混联电网静态电压稳定优化控制方法[ J] . 电 力科学与技术学报, 2023, 38(3) : 94-104.
TU S J, YANG Y R, LIN S J, et al. An optimal control method for static voltage stability of AC / DC hybrid power grid considering the uncertainty of wind power[ J] . Journal of Electric Power Science and Technology, 2023, 38 (3) : 94-104.
[4] 张颖超, 成金杰, 邓华, 等. 基于相似日和特征提取 的短期风电功率预测[ J] . 郑州大学学报( 工学版) , 2020, 41(5) : 44-49.
ZHANG Y C, CHENG J J, DENG H, et al. Short-term wind power prediction based on similar day and feature extraction [ J] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(5) : 44-49.
[5] 蒋建东, 孙书凯, 董存, 等. 风电中长期电量预测研 究现状[ J] . 高电压技术, 2022, 48(2) : 409-419.
JIANG J D, SUN S K, DONG C, et al. Research status of mid-long term wind power generation forecasting [ J] . High Voltage Engineering, 2022, 48(2) : 409-419.
[6] ANTONANZAS J, OSORIO N, ESCOBAR R, et al. Review of photovoltaic power forecasting[ J] . Solar Energy, 2016, 136: 78-111.
[7] AHMED R, SREERAM V, MISHRA Y, et al. A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[ J] . Renewable and Sustainable Energy Reviews, 2020, 124: 109792.
[8] SOUBDHAN T, NDONG J, OULD-BABA H, et al. A robust forecasting framework based on the Kalman filtering approach with a two-fold parameter tuning procedure: application to solar and photovoltaic prediction [ J] . Solar Energy, 2016, 131: 246-259.
[9] DE ALENCAR D B, DE MATTOS AFFONSO C, DE OLIVEIRA R C L, et al. Different models for forecasting wind power generation: case study[ J] . Energies, 2017, 10(12) : 1976.
[10] YANG D Z. Making reference solar forecasts with climatology, persistence, and their optimal convex combination [ J] . Solar Energy, 2019, 193: 981-985.
[11] HU W B, YANG C Z. Grey model of direct solar radiation intensity on the horizontal plane for cooling loads calculation[ J] . Building and Environment, 2000, 35( 7) : 587-593.
[12] WANG S, LI B, LI G Z, et al. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration [ J ] . Applied Energy, 2021, 292: 116851.
[13] LIU W, LIU Y M, FU L, et al. Wind power forecasting method based on bidirectional long short-term memory neural network and error correction[ J]. Electric Power Components and Systems, 2021, 49(13 / 14): 1169-1180.
[14] LI Z, XU R S, LUO X R, et al. Short-term wind power prediction based on modal reconstruction and CNN-BiLSTM[ J] . Energy Reports, 2023, 9: 6449-6460.
[15] 李润金, 李丽霞. 基于 VMD-CNN-LSTM 模 型 的 短 期 风电功 率 预 测 [ J] . 沈 阳 工 程 学 院 学 报 ( 自 然 科 学 版) , 2024, 20(1) : 6-13.
LI R J, LI L X. Short-term wind power prediction based on VMD-CNN-LSTM model[ J]. Journal of Shenyang Institute of Engineering (Natural Science), 2024, 20(1): 6-13.
[16] 陈申, 叶小岭, 熊雄, 等. 基于天鹰优化算法的短期 风电功率区间预测[ J] . 重庆理工大学学报( 自然科 学) , 2023, 37(4) : 304-314.
CHEN S, YE X L, XIONG X, et al. Short-term wind power interval prediction based on Aquila optimization algorithm[ J] . Journal of Chongqing University of Technology (Natural Science) , 2023, 37(4) : 304-314.
[17] 欧阳资生, 唐伯聪. 基于 VMD-BiLSTM-ATT 预测模型 的碳中 和 指 数 量 化 投 资 研 究 [ J] . 金 融 经 济, 2023 (10) : 75-90.
OUYANG Z S, TANG B C. Quantifying carbon neutrality investment research based on VMD-BiLSTM-ATT forecasting model[ J] . Finance Economy, 2023(10) : 75-90.
[18] 肖烈禧, 张玉, 周辉, 等. 基于 IAOA-VMD-LSTM 的超 短期风电功率预测[ J] . 太阳能学报, 2023, 44( 11) : 239-246.
XIAO L X, ZHANG Y, ZHOU H, et al. Ultra short trem wind power prediction based on IAOA-VMD-LSTM [ J] . Acta Energiae Solaris Sinica, 2023, 44(11) : 239-246.
[19] 李飞宏, 肖迎群. 基于 VMD-GRU-EC 的短期电力负荷 预测方法[ J] . 中国测试, 2023, 49(10) : 120-127.
LI F H, XIAO Y Q. Short-term power load forecasting method based on VMD-GRU-EC[ J] . China Measurement & Test, 2023, 49(10) : 120-127.
[20] XUE J K, SHEN B. Dung beetle optimizer: a new metaheuristic algorithm for global optimization[ J] . The Journal of Supercomputing, 2023, 79(7) : 7305-7336.
[21] 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用 [ J] . 计算机科学与探索, 2024, 18(4) : 930-946.
GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application [ J ]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 930-946.
[22] DEHGHANI M, TROJOVSKY P. Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems [ J] . Frontiers in Mechanical Engineering, 2023, 8: 1126450.
[23] 李津, 史加荣, 张琰妮, 等. 基于最大信息系数的短 期太 阳 辐 射 协 同 估 计 [ J] . 太 阳 能 学 报, 2023, 44 (9) : 286-294.
LI J, SHI J R, ZHANG Y N, et al. Short-term solar radiation synergy estimation based on maximum information coefficient[ J] . Acta Energiae Solaris Sinica, 2023, 44 (9) : 286-294.
[24] 杨锡运, 刘玉奇, 李建林. 基于四分位法的含储能光 伏电站可靠性置信区间计算方法[ J] . 电工技术学报, 2017, 32(15) : 136-144.
YANG X Y, LIU Y Q, LI J L. Reliability confidence interval calculation method for photovoltaic power station with energy storage based on quartile method[ J] . Transactions of China Electrotechnical Society, 2017, 32 (15) : 136-144.
[25] 杨子民, 彭小圣, 熊予涵, 等. 计及邻近风电场信息 与 CNN-BiLSTM 的短期风电功率预测[ J] . 南方电网 技术, 2023, 17(2) : 47-56.
YANG Z M, PENG X S, XIONG Y H, et al. Short-term wind power prediction based on information in neighboring wind farms and CNN-BiLSTM [ J] . Southern Power System Technology, 2023, 17(2) : 47-56.
[26] 辛征, 王琦, 刘兴然. 短期风电功率预测的深度学习 模型[ J] . 计算机时代, 2023(2) : 33-36, 41.
XIN Z, WANG Q, LIU X R. Deep learning model for short-term wind power prediction [ J ] . Computer Era, 2023(2) : 33-36, 41.