STATISTICS

Viewed1

Downloads

Modulation Recognition Algorithm Based on Multi-criteria Fusion and Intelligent Decision
[1]XIA Zhaoyu,LIN Yujie,HU Chunyuan,et al.Modulation Recognition Algorithm Based on Multi-criteria Fusion and Intelligent Decision[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):55-61.[doi:10.13705/j.issn.1671-6833.2024.04.015]
Copy
References:
[1] AN Z L, ZHANG T Q, SHEN M, et al. Series-constellation feature based blind modulation recognition for beyond 5G MIMO-OFDM systems with channel fading[ J] . IEEE Transactions on Cognitive Communications and Networking, 2022, 8(2) : 793-811. 
[2] JANNAH R R, KHAYAM U. Design, implementation, and testing of partial discharge signal pattern recognition and judgment system application using statistical method [ C ] ∥ International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering ( ICEVT & IMECE) . Piscataway: IEEE, 2015: 314-318. 
[3] LIU Y B, LIU Y, YANG C. Modulation recognition with graph convolutional network[ J] . IEEE Wireless Communications Letters, 2020, 9(5) : 624-627. 
[4] ZHANG X L, LI T Y, GONG P, et al. Open set recognition of communication signal modulation based on deep learning[ J] . IEEE Communications Letters, 2022, 26 (7) : 1588-1592. 
[5] ZHANG W N, SUN Y Q, XUE K L, et al. Research on modulation recognition algorithm based on channel and spatial self-attention mechanism [ J ] . IEEE Access, 2023, 11: 68617-68631. 
[6] DENG W, WANG X, HUANG Z T, et al. Modulation classifier: a few-shot learning semi-supervised method based on multimodal information and domain adversarial network [ J ] . IEEE Communications Letters, 2023, 27 (2) : 576-580. 
[7] WANG T, HOU Y H, ZHANG H Y, et al. Deep learning based modulation recognition with multi-cue fusion [ J] . IEEE Wireless Communications Letters, 2021, 10 (8) : 1757-1760. 
[8] LIN S G, ZENG Y, GONG Y. Modulation recognition using signal enhancement and multistage attention mechanism [ J ] . IEEE Transactions on Wireless Communications, 2022, 21(11) : 9921-9935. 
[9] YANG C, HE Z M, PENG Y, et al. Deep learning aided method for automatic modulation recognition [ J ] . IEEEAccess, 2019, 7: 109063-109068. 
[10] ZHAO X D, ZHOU X H, XIONG J, et al. Automatic modulation recognition based on multi-dimensional feature extraction[C]∥2020 International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway: IEEE, 2020: 823-828. 
[11] JI M R, HUANG C Z, LUO R S. Automatic modulation recognition based on spatio-temporal features fusion[C]∥ 2022 IEEE 12th International Conference on Electronics Information and Emergency Communication ( ICEIEC ) . Piscataway: IEEE, 2022: 89-93. 
[12] XU S, LIU L T, ZHAO Z K. DTFTCNet: radar modulation recognition with deep time-frequency transformation [ J ] . IEEE Transactions on Cognitive Communications and Networking, 2023, 9(5) : 1200-1210. 
[13] HOU C B, LIU G W, TIAN Q, et al. Multisignal modulation classification using sliding window detection and complex convolutional network in frequency domain[ J] . IEEE Internet of Things Journal, 2022, 9( 19) : 19438- 19449. 
[14] YAO R G, WANG P, ZUO X Y, et al. Intelligent modulation pattern recognition based on wavelet approximate coefficient entropy in cognitive radio networks[ J] . IEEE Access, 2020, 8: 226176-226187. 
[15] ZENG Y, ZHANG M, HAN F, et al. Spectrum analysis and convolutional neural network for automatic modulation recognition[ J] . IEEE Wireless Communications Letters, 2019, 8(3) : 929-932. 
[16] 张贤达. 现代信号处理[M] . 3 版. 北京: 清华大学出 版社, 2015. 
ZHANG X D. Modern signal processing [ M] . 3rd ed. Beijing: Tsinghua University Press, 2015. 
[17] ZENG L, CHIANG H D, LIANG D, et al. Trust-tech source-point method for systematically computing multiple local optimal solutions: theory and method [ J ] . IEEE Transactions on Cybernetics, 2022, 52 ( 11 ) : 11686 - 11697. 
[18] ZHAO Z, YANG A Y, GUO P. A modulation format identification method based on information entropy analysis of received optical communication signal [ J ] . IEEE Access, 2019, 7: 41492-41497. 
[19] 韩刚涛, 马瑞鹏, 吴迪. 基于时频图切割的宽带信号 智能检测与识别[ J] . 郑州大学学报(工学版) , 2023, 44(3) : 42-49. 
HAN G T, MA R P, WU D. Intelligent detection and identification of broadband signals based on time-frequency map cutting[ J] . Journal of Zhengzhou University (Engineering Science) , 2023, 44(3) : 42-49. 
[20] LAI C M, KUO T J. Available capacity computation model based on long short-term memory recurrent neural network for gelled-electrolyte batteries in golf carts [ J ] . IEEE Access, 2021, 10: 54433-54444. 
[21] 李航. 统计学习方法[M] . 2 版. 北京: 清华大学出版 社, 2019. 
LI H. Statistical learning method[ M] . 2nd ed. Beijing: Tsinghua University Press, 2019.
Similar References:
Memo

-

Last Update: 2025-07-13
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)