STATISTICS

Viewed47

Downloads23

Analysis on Surface Settlement of Pipe Jacking Method for Construction of Contact Channel in Water-rich Silty Fine Sand Layer
[1]LI Xiaolong,LI Pengchao,LIU Xiaofeng,et al.Analysis on Surface Settlement of Pipe Jacking Method for Construction of Contact Channel in Water-rich Silty Fine Sand Layer[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):67-74.[doi:10.13705/j.issn.1671-6833.2025.01.009]
Copy
References:
[1]王晖, 竺维彬, 李大勇. 富水砂层中联络通道施工工法及其控制措施[J]. 铁道工程学报, 2010, 27(9): 82-87. 
WANG H, ZHU W B, LI D Y. Construction method and control measure for connecting passage in water-enriched sand bed[J]. Journal of Railway Engineering Society, 2010, 27(9): 82-87. 
[2]田海洋. 冻结法加固技术在富水粉细砂层联络通道施工中的应用[J]. 现代隧道技术, 2022, 59(增刊2): 214-222. 
TIAN H Y. Application of freezing method in connection channel construction in water-rich silty sand layer[J]. Modern Tunnelling Technology, 2022, 59(S2): 214-222. 
[3]梅源, 赵良杰, 周东波, 等. 冻结法在富水砂层暗挖施工中的应用[J]. 中国铁道科学, 2020, 41(4): 1-10. 
MEI Y, ZHAO L J, ZHOU D B, et al. Application of AGF in underground excavation construction of water-rich sand layer[J]. China Railway Science, 2020, 41(4): 1-10. 
[4]张英智, 阮雷, 韦晓霞, 等. 富水砂层盾构隧道联络通道人工冻结法地层变化特性研究[J]. 隧道建设(中英文), 2021, 41(增刊2): 106-114. 
ZHANG Y Z, RUAN L, WEI X X, et al. Characteristics of stratum variations for connecting passage of shield tunnel with artificial freezing method in water-rich sand stratum[J]. Tunnel Construction, 2021, 41 (S2): 106-114. 
[5]王晖, 李大勇, 李健, 等. 地铁联络通道冻结法施工三维数值模拟分析[J]. 地下空间与工程学报, 2011, 7(增刊2): 1589-1593. 
WANG H, LI D Y, LI J, et al. Analysis of 3D numerical simulation in ground freezing method for a cross passage of the subway[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(S2): 1589-1593. 
[6]郜新军, 李铭远, 张景伟, 等. 富水粉质黏土中地铁联络通道冻结法试验研究[J]. 岩石力学与工程学报, 2021, 40(6): 1267-1276. 
GAO X J, LI M Y, ZHANG J W, et al. Field research on artificial freezing of subway cross passages in waterrich silty clay layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1267-1276. 
[7]LIU X, SHEN Y P, ZHANG Z C, et al. Field measurement and numerical investigation of artificial ground freezing for the construction of a subway cross passage under groundwater flow[J]. Transportation Geotechnics, 2022, 37: 100869. 
[8]黄大维,陈后宏, 徐长节, 等. 联络通道施工盾构机接收对已建盾构隧道影响试验研究[J]. 岩土工程学报, 2024, 46(4): 784-793. 
HUANG D W, CHEN H H, XU C J, et al. Experimental study on influences of shield machine reception on existing shield tunnels during construction of connecting channels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 784-793. 
[9]孙龙飞, 陈振雷, 李坚成. 盾构法开挖地铁联络通道对地表沉降的影响研究[J]. 岩土工程技术, 2019, 33 (4): 197-201, 213. 
SUN L F, CHEN Z L, LI J C. Effects of surface subsidence in excavation of metro crossing passage tunnel by shield machine[J]. Geotechnical Engineering Technique, 2019, 33(4): 197-201, 213. 
[10]卫佳莺, 马永政, 莫振泽, 等. 机械法联络通道T接施工地层隆沉变化特征研究———以无锡地铁3号线顶管法联络通道T接施工示范工程为例[J]. 隧道建设(中英文), 2020, 40(增刊2): 136-143. 
WEI J Y, MA Y Z, MO Z Z, et al. Study on influence of ground settlement in T-joint connecting passage with mechanical pipe jacking method: with the example of the demonstration project of T-joint construction of connecting passage with pipe jacking method in Wuxi Metro Line 3 [J]. Tunnel Construction, 2020, 40(S2): 136-143. 
[11]胡威, 黄强, 李海波, 等. 机械法联络通道施工对T接部位沉降影响的实测与数值分析[J]. 施工技术(中英文), 2022, 51(13): 68-74, 80. 
HU W, HUANG Q, LI H B, et al. Actual measurement and numerical analysis of influence of mechanical connection channel construction on settlement of T-junction[J]. Construction Technology, 2022, 51(13): 68-74, 80. 
[12]梅清俊, 朱瑶宏, 马永政, 等. 滨海软土地层机械法联络通道施工影响监测分析[J]. 宁波大学学报(理工版), 2021, 34(2): 73-79. 
MEI Q J, ZHU Y H, MA Y Z, et al. Monitoring and analysis of the influence of mechanical connecting passage construction in coastal soft soil layer[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2021, 34(2): 73-79.
[13]吴波, 许杰, 黄惟, 等. 富水砂层刚度参数敏感性分析及地表沉降预测[J]. 中国安全生产科学技术, 2020, 16(9): 96-102. 
WU B, XU J, HUANG W, et al. Sensitivity analysis of stiffness parameter and prediction of ground settlement for watered sandy stratum[J]. Journal of Safety Science and Technology, 2020, 16(9): 96-102. 
[14]吴宏, 叶治, 张宇亭, 等. 穿越不同密实度饱和砂土地层的盾构隧道地震响应三维数值分析[J]. 岩土力学, 2023, 44(4): 1204-1216. 
WU H, YE Z, ZHANG Y T, et al. Numerical study on seismic behavior of shield tunnel crossing saturated sandy strata with different densities[J]. Rock and Soil Mechanics, 2023, 44(4): 1204-1216. 
[15]郜新军, 段鹏辉, 王磊. 基坑开挖对邻近管线变形影响及控制措施研究[J]. 郑州大学学报(工学版), 2020, 41(5): 66-71. 
GAO X J, DUAN P H, WANG L. The influence of foundation pit excavation on deformation of adjacent underground pipelines and control measures[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41 (5): 66-71. 
[16]姚超凡, 晏启祥, 何川, 等. 盾构隧道内力分析方法的对比研究[J]. 铁道标准设计, 2013, 57(12): 95-99. 
YAO C F, YAN Q X, HE C, et al. Comparative study on internal force analysis methods of shield tunnel[J]. Railway Standard Design, 2013, 57(12): 95-99. 
[17]吴华州, 李兴高, 蔡志勇. 复杂地质环境下异形交叉暗挖通道开挖数值模拟[J]. 现代隧道技术, 2021, 58 (增刊1): 303-312. 
WU H Z, LI X G, CAI Z Y. Numerical simulation of excavation of irregularly crossed mined tunnels in complex geological environment[J]. Modern Tunnelling Technology, 2021, 58(S1): 303-312.
Similar References:
Memo

-

Last Update: 2024-12-31
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)