STATISTICS

Viewed347

Downloads328

Soil Moisture Inversion for Winter Wheat Field Based on UAVMultispectral and Thermal Infrared Data
[1]ZHANG Chengcai,HOU Jiatong,WANG Rui,et al.Soil Moisture Inversion for Winter Wheat Field Based on UAVMultispectral and Thermal Infrared Data[J].Journal of Zhengzhou University (Engineering Science),2024,45(05):111-118.[doi:10.13705/j.issn.1671-6833.2024.05.002]
Copy
References:
[ 1 ] 冯珊珊, 梁雪映, 樊风雷, 等. 基于无人机多光谱数据的农田土壤水分遥感监测[ J] . 华南师范大学学报(自然科学版) , 2020, 52(6) : 74-81.
FENG S S, LIANG X Y, FAN F L, et al. Monitoring offarmland soil moisture based on unmanned aerial vehiclemultispectral data[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 74-81.
[ 2 ] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[ J] . 武 汉 大 学 学 报 ( 信 息 科 学 版) , 2014, 39(5) : 505-513, 540.
LI D R, LI M. Research advance and application prospect of unmanned aerial vehicle remote sensing system[ J] . Geomatics and Information Science of Wuhan University, 2014, 39(5) : 505-513, 540.
[ 3 ] 金伟, 葛宏立, 杜华强, 等. 无人机遥感发展与应用概况[ J] . 遥感信息, 2009, 24(1) : 88-92.
JIN W, GE H L, DU H Q, et al. A review on unmannedaerial vehicle remote sensing and its application[J]. Remote Sensing Information, 2009, 24(1): 88-92.
[ 4 ] 马仪, 黄组桂, 贾江栋, 等. 基于无人机-卫星遥感升尺度的土壤水分监测模型研究[ J] . 农业机械学报, 2023, 54(6) : 307-318.
MA Y, HUANG Z G, JIA J D, et al. Soil moisture monitoring model based on UAV-satellite remote sensingscale-up[ J ] . Transactions of the Chinese Society forAgricultural Machinery, 2023, 54(6) : 307-318.
[ 5 ] 葛少青, 张剑, 孙文, 等. 三种干旱指数在干旱区沼泽湿地土壤水分遥感反演中的应用[ J] . 生态学报,2018, 38(7) : 2299-2307.
GE S Q, ZHANG J, SUN W, et al. Application of threedrought indexes in soil moisture inversion using remotesensing in marsh wetlands of arid area[ J] . Acta Ecologica Sinica, 2018, 38(7) : 2299-2307.
[ 6 ] 蔡亮红, 丁建丽, 魏阳. 基于多源数据的土壤水分反演及空 间 分 异 格 局 研 究 [ J] . 土 壤 学 报, 2017, 54(5) : 1057-1067.
CAI L H, DING J L, WEI Y. Spatial variation and inversion of soil moisture based on multi-source data[ J] .Acta Pedologica Sinica, 2017, 54(5) : 1057-1067.
[ 7 ] 张文江, 陆其峰, 高志强, 等. 基于水分距平指数的2006 年四川盆地东部特大干旱遥感响应分析[ J]. 中国科学:D 辑 地球科学, 2008, 38(2): 251-260.
ZHANG W J, LU Q F, GAO Z Q, et al. Remote sensing response analysis of the severe drought in eastern Sichuan Basin in 2006 based on moisture anomaly index[J]. Science in China: Series D Earth Sciences, 2008,38(2) : 251-260.
[ 8 ] 高磊, 覃志豪, 卢丽萍. 基于植被指数和地表温度特征空间的农业干旱监测模型研究综述[ J] . 国土资源遥感, 2007, 19(3) : 1-7.
GAO L, QIN Z H, LU L P. An overview on agriculturaldrought monitoring models based on vegetation index andsurface temperature feature space [ J] . Remote Sensingfor Land & Resources, 2007, 19(3) : 1-7.
[ 9 ] 杨志辉, 赵军, 朱国锋, 等. 顾及植被覆盖影响的石羊河流域土壤水分遥感估算及空间格局分析[ J] . 生态学报, 2020, 40(23) : 8826-8837.
YANG Z H, ZHAO J, ZHU G F, et al. Remote sensing estimation and spatial pattern analysis of soil moisture in Shiyang River Basin considering the influence of vegetation cover[J]. Acta Ecologica Sinica, 2020, 40(23): 8826-8837.
[10] GHULAM A,QIN Q,TEYIP T,et al. Modified perpendiculardrought index ( MPDI ): a real-time drought monitoringmethod[ J]. Photogrammetry and Remote Sensing,2007,62(2):150-164.
[11] 朱燕香, 潘剑君, 白浩然, 等. 基于 Sentinel-2A 影像的 OPTRAM 模型及其改进模型的土壤水分估算研究[ J] . 南京农业大学学报, 2020, 43(4) : 682-689.
ZHU Y X, PAN J J, BAI H R, et al. Soil moisture estimation with the OPTRAM model and its improved modelbased on Sentinel-2A data[ J] . Journal of Nanjing Agricultural University, 2020, 43(4) : 682-689.
[12] PRICE J C. Using spatial context in satellite data to inferregional scale evapotranspiration[J]. IEEE Transactions onGeoscience and Remote Sensing, 1990, 28(5): 940-948.
[13] 王正兴, 刘闯, ALFREDO H. 植被指数研究进展: 从AVHRR-NDVI 到 MODIS-EVI [ J ] . 生 态 学 报, 2003,23(5) : 979-987.
WANG Z X, LIU C, ALFREDO H. From AVHRR-NDVIto MODIS-EVI: advances in vegetation index research[ J] . Acta Ecologica Sinica, 2003, 23(5) : 979-987.
[14] 杨曦, 武建军, 闫峰, 等. 基于地表温度-植被指数特征空间的区域土壤干湿状况[ J] . 生态学报, 2009, 29(3) : 1205-1216.
YANG X, WU J J, YAN F, et al. Assessment of regionalsoil moisture status based on characteristics of surfacetemperature / vegetation index space [ J] . Acta EcologicaSinica, 2009, 29(3) : 1205-1216.
[15] 冯海霞, 秦其明, 李滨勇, 等. 基于 SWIR-Red 光谱特征空间的农田干旱监测新方法[ J] . 光谱学与光谱分析, 2011, 31(11) : 3069-3073.
FENG H X, QIN Q M, LI B Y, et al. The new methodmonitoring agricultural drought based on SWIR-red spectrum feature space[ J] . Spectroscopy and Spectral Analysis, 2011, 31(11) : 3069-3073.
[16] 丁艳玲. 植被覆盖度遥感估算及其真实性检验研j究[D] . 北京: 中国科学院大学, 2015.
DING Y L. Study on remote sensing estimation of vegetation coverage and its authenticity test[ D] . Beijing: University of Chinese Academy of Sciences, 2015.
[17] 敖登, 杨佳慧, 丁维婷, 等. 54 种植被指数研究进展综述[ J] . 安徽农业科学, 2023, 51(1) : 13-21, 28.
AO D, YANG J H, DING W T, et al. Review of 54 vegetation indices [ J ] . Journal of Anhui Agricultural Sciences, 2023, 51(1) : 13-21, 28.
[18] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[ J] . 统计与信息论坛, 2011, 26(3) : 32-38.F
ANG K N, WU J B, ZHU J P, et al. A review of technologies on random forests [ J] . Statistics & InformationForum, 2011, 26(3) : 32-38.
[19] 李爱民, 王海隆, 许有成. 优化随机森林算法的城市湖泊 DOC 质量浓度遥感反演[ J] . 郑州大学学报( 工学版) , 2022, 43(6) : 90-96.
LI A M, WANG H L, XU Y C. Remote sensing retrievalof urban lake DOC concentration based on optimized random forest algorithm[ J] . Journal of Zhengzhou University(Engineering Science) , 2022, 43(6) : 90-96.
[20] 张智韬, 许崇豪, 谭丞轩, 等. 覆盖度对无人机热红外遥感反演玉米土壤含水率的影响[ J] . 农业机械学报, 2019, 50(8) : 213-225.
ZHANG Z T, XU C H, TAN C X, et al. Influence ofcoverage on soil moisture content of field corn inversedfrom thermal infrared remote sensing of UAV[ J] . Transactions of the Chinese Society for Agricultural Machinery,2019, 50(8) : 213-225.
Similar References:
Memo

-

Last Update: 2024-09-02
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)