STATISTICS

Viewed175

Downloads173

Effect of Fire Extinguishing Agents on Compressive Strength and Splitting Tensile Strength of Concretes Exposed to High Temperatures
[1]KUANG Yida,YAO Zhimin,BIAN Huiting,et al.Effect of Fire Extinguishing Agents on Compressive Strength and Splitting Tensile Strength of Concretes Exposed to High Temperatures[J].Journal of Zhengzhou University (Engineering Science),2024,45(04):111-116.[doi:10.13705/ j.issn.1671-6833.2024.04.007]
Copy
References:
[1] 陈宗平, 王欢欢, 陈宇良. 高温后混凝土的力学性能 试验研究[J]. 混凝土, 2015(1): 13-17. 
CHEN Z P, WANG H H, CHEN Y L. Test study on mechanical properties of concrete after a fire high tempera ture[J]. Concrete, 2015(1): 13-17. 
[2] 花尉攀, 李凯峰, 谢晓杰. 高温后混凝土抗压强度及 细观损伤机理实验研究[J]. 消防科学与技术, 2021, 40(9): 1317-1321. 
HUA W P, LI K F, XIE X J. Experimental study on compressive strength and meso-damage of concrete under high temperature[J]. Fire Science and Technology, 2021, 40(9): 1317-1321. 
[3] 梁书锋, 方士正, 韦贵华, 等. 高温作用后硅质砂岩 力学性能试验[J]. 郑州大学学报(工学版), 2021, 42(3): 87-92. 
LIANG S F, FANG S Z, WEI G H, et al. Experiments on mechanical properties of siliceous sandstone after high temperature[J]. Journal of Zhengzhou University (Engi neering Science), 2021, 42(3): 87-92. 
[4] 徐彧, 徐志胜. 高温作用后混凝土强度试验研究[J]. 混凝土, 2000(2): 44-45, 53. 
XU Y, XU Z S. Experiment investigation of strength of concrete after high temperature[J]. Concrete, 2000(2):44-45, 53. 
[5] 贾福萍, 吕恒林, 崔艳莉, 等. 不同冷却方式对高温 后混凝土性能退化研究[J]. 中国矿业大学学报, 2009, 38(1): 25-29. 
JIA F P, LYU H L, CUI Y L, et al. Research on de graded behaviors of research into the degraded properties of concrete specimens heated to different temperatures and then subject to various cooling methods[J]. Journal of China University of Mining & Technology, 2009, 38(1): 25-29. 
[6] ARIOZ O. Effects of elevated temperatures on properties of concrete[J]. Fire Safety Journal, 2007, 42(8): 516 522. 
[7] MUBARAK Y, ALBTOOSH S, AL-HAMAMREH Z. Effects of the exposure to fire and fire extinguishing agents on the behavior of building materials[J]. International Journal of Emerging Trends in Engineering Research, 2020,8(7): 3433-3441. 
[8] 曹丽英, 张品, 张永丰, 等. 七氟丙烷灭火剂热解规 律研究[J]. 消防科学与技术, 2014, 33(12): 1426 1428, 1439. 
CAO L Y, ZHANG P, ZHANG Y F, et al. A study on the pyrolysis regularity of HFC-227ea[J]. Fire Science and Technology, 2014, 33(12): 1426-1428, 1439. 
[9] 傅学成, 陈涛, 周彪, 等. 七氟丙烷与火焰作用过程 中产生的氟化氢研究[J]. 燃烧科学与技术, 2011, 17 (4): 363-367. 
FU X C, CHEN T, ZHOU B, et al. Generation of hydro gen fluoride during fire suppression using 2-H-heptaflu oropropane[J]. Journal of Combustion Science and Tech nology, 2011, 17(4): 363-367. 
[10]国家质量监督检验检疫总局, 中国国家标准化管理委 员会. 通用硅酸盐水泥: GB 175—2007[S]. 北京: 中 国标准出版社, 2008. 
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Stand ardization Administration of the People′s Republic of Chi na. Common portland cement: GB 175—2007[S]. Bei jing: Standards Press of China, 2008. 
[11]国家市场监督管理总局, 国家标准化管理委员会. 建 设用卵石、碎石: GB/T 14685—2022[S]. 北京: 中国 标准出版社, 2022. 
State Administration for Market Regulation, Standardiza tion Administration of the People′s Republic of China. Pebble and crushed stone for construction: GB/T 14685—2022 [S]. Beijing: Standards Press of China, 2022. 
[12]国家市场监督管理总局, 国家标准化管理委员会. 建设用 砂: GB/T 14684—2022[S]. 北京: 中国标准出版社, 2022. 
State Administration for Market Regulation, Standardiza tion Administration of the People′s Republic of China. Sand for construction: GB/T 14684—2022[S]. Beijing: Standards Press of China, 2022. 
[13]中华人民共和国住房和城乡建设部. 普通混凝土配合 比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业 出版社, 2011. 
Ministry of Housing and Urban-Rural Development of the People′s Republic of China. Specification for mix propor tion design of ordinary concrete: JGJ 55—2011[S]. Bei jing: China Architecture & Building Press, 2011. 
[14] DWAIKAT M B, KODUR V K R. Hydrothermal model for predicting fire-induced spalling in concrete structural sys tems[J]. Fire Safety Journal, 2009, 44(3): 425-434. 
[15] YAO W J, PANG J Y, LIU Y S. Performance degradation and microscopic analysis of lightweight aggregate con crete after exposure to high temperature[J]. Materials, 2020, 13(7): 1566. 
[16]李春玲, 陈兵, 陈龙珠. 早龄期混凝土高温性能试验研 究[J]. 四川建筑科学研究, 2008, 34(4): 184-188. 
LI C L, CHEN B, CHEN L Z. Experimental study on mechanical properties of early-aged concrete after expo sure to high temperatures[J]. Sichuan Building Science, 2008, 34(4): 184-188. 
[17]杨倩. 高温后自然冷却的普通混凝土承压性能试验研 究[D]. 南宁: 广西大学, 2018. 
YANG Q. Experimental study on compressive behavior of ordinary concrete with cooling naturally after high temper ature[D]. Nanning: Guangxi University, 2018. 
[18]WANG G M, ZHANG C, ZHANG B, et al. Study on the high-temperature behavior and rehydration characteristics of hardened cement paste[J]. Fire and Materials, 2015, 39(8): 741-750. 
[19] ZHANG J R, LV T, ZHU Y, et al. Damage mechanism of engineered cementitious composites after exposed to el evated temperatures: experimental and molecular dynam ics study[J]. Cement and Concrete Composites, 2022, 129: 104507. 
[20] ZHAO Y, DING D, BI J, et al. Experimental study on mechanical properties of precast cracked concrete under different cooling methods[J]. Construction and Building Materials, 2021, 301: 124141. 
[21] KE W, WANG K, ZHOU B, et al. The cooling perform ance of halogenated alkane fire extinguishing agent and its quantitative prediction model[J]. Thermal Science and Engineering Progress, 2021, 26: 101093.
Similar References:
Memo

-

Last Update: 2024-06-14
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)