STATISTICS

Viewed882

Downloads1193

Research Progress of Multimodal Named Entity Recognition
[1]WANG Hairong,XU Xi,WANG Tong,et al.Research Progress of Multimodal Named Entity Recognition[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):60-71.[doi:10.13705/j.issn.1671-6833.2024.02.001]
Copy
References:
[1] GRISHMAN R, SUNDHEIM B. Message understanding conference-6: a brief history[C]∥Proceedings of the 16th conference on Computational linguistics. Stroudsburg: ACL, 1996: 466-471.
[2] 佘俊, 张学清. 音乐命名实体识别方法[J]. 计算机应用, 2010, 30(11): 2928-2931, 2948.
SHE J, ZHANG X Q. Musical named entity recognition method[J]. Journal of Computer Applications, 2010, 30(11): 2928-2931, 2948.
[3] 潘正高. 基于规则和统计相结合的中文命名实体识别研究[J]. 情报科学, 2012, 30(5): 708-712, 786.
PAN Z G. Research on the recognition of Chinese named entity based on rules and statistics[J]. Information Science, 2012, 30(5): 708-712, 786.
[4] ZHOU G D, SU J. Named entity recognition using an HMM-based chunk tagger[C]∥Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. New York:ACM, 2002: 473-480.
[5] 梁立荣, 李长伟, 沈晔, 等. 基于层叠条件随机场模型的电子病历文本信息抽取[J]. 计算机应用与软件, 2019, 36(10): 47-54, 112.
LIANG L R, LI C W, SHEN Y, et al. Text information extraction for electronic medical record based on cascaded conditional random field model[J]. Computer Applications and Software, 2019, 36(10): 47-54, 112.
[6] KONG J, ZHANG L X, JIANG M, et al. Incorporating multi-level CNN and attention mechanism for Chinese clinical named entity recognition[J]. Journal of Biomedical Informatics, 2021, 116: 103737.
[7] 罗凌, 杨志豪, 宋雅文, 等. 基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究[J]. 计算机学报, 2020, 43(10): 1943-1957.
LUO L, YANG Z H, SONG Y W, et al. Chinese clinical named entity recognition based on stroke ELMo and multi-task learning[J]. Chinese Journal of Computers, 2020, 43(10): 1943-1957.
[8] 杨飘, 董文永. 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程, 2020, 46(4): 40-45, 52.
YANG P, DONG W Y. Chinese named entity recognition method based on BERT embedding[J]. Computer Engineering, 2020, 46(4): 40-45, 52.
[9] 郭军成, 万刚, 胡欣杰, 等. 基于BERT的中文简历命名实体识别[J]. 计算机应用, 2021, 41(增刊1): 15-19.
GUO J C, WAN G, HU X J, et al. Chinese resume named entity recognition based on BERT[J]. Journal of Computer Applications, 2021, 41(S1): 15-19.
[10] 李博, 康晓东, 张华丽, 等. 采用Transformer-CRF的中文电子病历命名实体识别[J]. 计算机工程与应用, 2020, 56(5): 153-159.
LI B, KANG X D, ZHANG H L, et al. Named entity recognition in Chinese electronic medical records using transformer-CRF[J]. Computer Engineering and Applications, 2020, 56(5): 153-159.
[11] CETOLI A, BRAGAGLIA S, O′HARNEY A D, et al. Graph convolutional networks for named entity recognition[C]∥Proceedings of the 16th International Workshop on Treebanks and Linguistic Theories. Stroudsburg: ACL, 2018:37-45.
[12] TANG Z, WAN B Y, YANG L. Word-character graph convolution network for Chinese named entity recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 1520-1532.
[13] SUI Y, BU F Y, HU Y T, et al. Trigger-GNN: a trigger-based graph neural network for nested named entity recognition[C]∥2022 International Joint Conference on Neural Networks (IJCNN). Piscataway:IEEE, 2022: 1-8.
[14] 刘威,马磊,李凯,等.基于多粒度字形增强的中文医学命名实体识别[J].计算机工程,2024,50(2):337-344.
LIU W, MA L, LI K, et al. Chinese medical named entity recognition based on multi-granularity glyph enhancement[J]. Computer Engineering,2024,50(2):337-344.
[15] 赵珍珍,董彦如,刘静等.融合词信息和图注意力的医学命名实体识别[J/OL].计算机工程与应用,2023:1-11(2023-06-14)[2023-09-27].https:∥kns.cnki.net/kcms2/detail/11.2127.TP.20230613.1328.010.html.
ZHAO Z Z, DONG Y R, LIU J, et al. Medical named entity recognition incorporating word lnformation and graph attention [J/OL]. Computer Engineering and Applications,2023,1-11(2023-06-14)[2023-09-27].https:∥kns.cnki.net/kcms2/detail/11.2127.TP.20230613.1328.010.html.
[16] 陈曙东, 罗超, 欧阳小叶, 等. 基于动态词典匹配的语义增强中文命名实体识别算法[J]. 无线电工程, 2021, 51(7): 519-525.
CHEN S D, LUO C, OUYANG X Y, et al. A semantic-enhanced Chinese named entity recognition algorithm based on dynamic dictionary matching[J]. Radio Engineering, 2021, 51(7): 519-525.
[17] 胡新棒, 于溆乔, 李邵梅, 等. 基于知识增强的中文命名实体识别[J]. 计算机工程, 2021, 47(11): 84-92.
HU X B, YU X Q, LI S M, et al. Chinese named entity recognition based on knowledge enhancement[J]. Computer Engineering, 2021, 47(11): 84-92.
[18] 耿志超, 颜航, 邱锡鹏, 等. 基于不确定片段的检索增强命名实体识别框架[J]. 中文信息学报, 2023, 37(7): 71-81.
GENG Z C, YAN H, QIU X P, et al. The uncertainty-based retrieval framework for Chinese NER[J]. Journal of Chinese Information Processing, 2023, 37(7): 71-81.
[19] 廖梦,贾真,李天瑞.基于标签信息融合与多任务学习的中文命名实体识别[J/OL].计算机科学, 2023:1-11(2023-09-26)[2023-09-27].https:∥link.cnki.net/urlid/50.1075.TP.20230925.2014.235.
LIAO M, JIA Z, LI T R .Chinese named entity recognition based on label information fusion and multi-task learning[J].Computer Science, 2023:1-11(2023-09-26)[2023-09-27].https:∥link.cnki.net/urlid/50.1075.TP.20230925.2014.235.
[20] 王蓬辉, 李明正, 李思. 基于数据增强的中文医疗命名实体识别[J]. 北京邮电大学学报, 2020, 43(5): 84-90.
WANG P H, LI M Z, LI S. Data augmentation for Chinese clinical named entity recognition[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5): 84-90.
[21] 余传明, 林虹君, 张贞港. 基于多任务深度学习的实体和事件联合抽取模型[J]. 数据分析与知识发现, 2022, 6(增刊1): 117-128.
YU C M, LIN H J, ZHANG Z G. Joint extraction model for entities and events with multi-task deep learning[J]. Data Analysis and Knowledge Discovery, 2022, 6(S1): 117-128.
[22] 武国亮, 徐继宁. 基于命名实体识别任务反馈增强的中文突发事件抽取方法[J]. 计算机应用, 2021, 41(7): 1891-1896.
WU G L, XU J N. Chinese emergency event extraction method based on named entity recognition task feedback enhancement[J]. Journal of Computer Applications, 2021, 41(7): 1891-1896.
[23] ARSHAD O, GALLO I, NAWAZ S, et al. Aiding intra-text representations with visual context for multimodal named entity recognition[C]∥2019 International Conference on Document Analysis and Recognition (ICDAR).Piscataway:IEEE, 2019: 337-342.
[24] ESTEVES D, PERES R, LEHMANN J, et al. Named entity recognition in twitter using images and text[C]∥International Conference on Web Engineering. Cham: Springer, 2018: 191-199.
[25] CHEN D W, LI Z X, GU B B, et al. Multimodal named entity recognition with image attributes and image knowledge[C]∥International Conference on Database Systems for Advanced Applications. Cham: Springer, 2021: 186-201.
[26] 范涛, 王昊, 陈玥彤. 基于深度迁移学习的地方志多模态命名实体识别研究[J]. 情报学报, 2022, 41(4): 412-423.
FAN T, WANG H, CHEN Y T. Research on multimodal named entity recognition of local history based on deep transfer learning[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(4): 412-423.
[27] MOON S, NEVES L, CARVALHO V. Multimodal named entity recognition for short social media posts[C]∥Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans:NAACL,2018:852-860.
[28] LU D, NEVES L, CARVALHO V, et al. Visual attention model for name tagging in multimodal social media[C]∥Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 1990-1999.
[29] ZHANG Q,FU J L,LIU X Y,et al. Adaptive co-attention network for named entity recognition in tweets[C]∥Proceedings of the Thirty-Second AAAI Conferenceon Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI,2018:5674-5681.
[30] ZHENG C M, WU Z W, WANG T, et al. Object-aware multimodal named entity recognition in social media posts with adversarial learning[J]. IEEE Transactions on Multimedia, 2020, 23: 2520-2532.
[31] ZHANG D, WEI S Z, LI S S, et al. Multi-modal graph fusion for named entity recognition with targeted visual guidance[C]∥Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI,2021:14347-14355.
[32] XU B, HUANG S Z, SHA C F, et al. MAF: a general matching and alignment framework for multimodal named entity recognition[C]∥Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 1215-1223.
[33] YU J F, JIANG J, YANG L, et al. Improving multimodal named entity recognition via entity span detection with unified multimodal transformer[C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg: ACL, 2020: 3342-3352.
[34] WANG X Y, GUI M, JIANG Y, et al. ITA: image-text alignments for multi-modal named entity recognition[C]∥Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 3176-3189 .
[35] WU Z W, ZHENG C M, CAI Y, et al. Multimodal representation with embedded visual guiding objects for named entity recognition in social media posts[C]∥Proceedings of the 28th ACM International Conference on Multimedia. New York:ACM, 2020: 1038-1046.
[36] CHEN S G, AGUILAR G, NEVES L, et al. Can images help recognize entities? a study of the role of images for Multimodal NER[C]∥Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021). Stroudsburg: ACL, 2021: 87-96.
[37] 钟维幸, 王海荣, 王栋, 等. 多模态语义协同交互的图文联合命名实体识别方法[J]. 广西科学, 2022, 29(4): 681-690.
ZHONG W X, WANG H R, WANG D, et al. Image-text joint named entity recognition method based on multi-modal semantic interaction[J]. Guangxi Sciences, 2022, 29(4): 681-690.
[38] TIAN Y, SUN X, YU H F, et al. Hierarchical self-adaptation network for multimodal named entity recognition in social media[J]. Neurocomputing, 2021, 439: 12-21.
[39] LIU L P, WANG M L, ZHANG M Z, et al. UAMNer: uncertainty-aware multimodal named entity recognition in social media posts[J]. Applied Intelligence, 2022, 52(4): 4109-4125.
[40] 李晓腾, 张盼盼, 勾智楠, 等. 基于多任务学习的多模态命名实体识别方法[J]. 计算机工程, 2023, 49(4): 114-119.
LI X T, ZHANG P P, GOU Z N, et al. Multi-modal named entity recognition method based on multi-task learning[J]. Computer Engineering, 2023, 49(4): 114-119.
[41] CHEN X, ZHANG N Y, LI L, et al. Good visual guidance make a better extractor: hierarchical visual prefix for multimodal entity and relation extraction[C]∥Findings of the ACL: NAACL 2022.Stroudsburg: ACL, 2022: 1607-1618.
[42] SUI D B, TIAN Z K, CHEN Y B, et al. A large-scale Chinese multimodal NER dataset with speech clues[C]∥Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 2807-2818.
[43] LIU Y, HUANG S B, LI R S, et al. USAF: multimodal Chinese named entity recognition using synthesized acoustic features[J]. Information Processing &Management, 2023, 60(3): 103290.
[44] 冯皓楠, 何智勇, 马良荔. 基于图文注意力融合的主题标签推荐[J]. 郑州大学学报(工学版), 2022, 43(6): 30-35.
FENG H N, HE Z Y, MA L L. Multimodal hashtag recommendation based on image and text attention fusion[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(6): 30-35.
[45] 郑建兴, 郭彤彤, 申利华, 等. 基于评论文本情感注意力的推荐方法研究[J]. 郑州大学学报(工学版), 2022, 43(2): 44-50, 57.
ZHENG J X, GUO T T, SHEN L H, et al. Research on recommendation method based on sentimental attention of review text[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(2): 44-50, 57.
[46] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].(2023-01-16)[2023-06-18].https:∥arxiv.org/abs/1301.3781.pdf.
[47] GOLDBERG Y, LEVY O. Word2vec explained: deriving Mikolov et al.′s negative-sampling word-embedding method[EB/OL]. (2014-02-15)[2023-06-18]. https:∥arxiv.org/abs/1402.3722.pdf.
[48] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]∥Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: ACL, 2014: 1532-1543.
[49] ATHIWARATKUN B, WILSON A, ANANDKUMAR A. Probabilistic FastText for multi-sense word embeddings[C]∥Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 1-11.
[50] PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]∥Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 2227-2237.
[51] ZHONG Q, TANG Y. An attention-based BILSTM-CRF for Chinese named entity recognition[C]∥2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). Piscataway:IEEE, 2020: 550-555.
[52] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2016: 770-778.
[53] HE K M, GKIOXARI G, DOLL R P, et al. Mask R-CNN[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE, 2017: 2980-2988.
[54] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway: IEEE, 2015: 3156-3164.
[55] ASGARI-CHENAGHLU M, FEIZI-DERAKHSHI M R, FARZINVASH L, et al. CWI: a multimodal deep learning approach for named entity recognition from social media using character, word and image features[J]. Neural Computing and Applications, 2022, 34(3): 1905-1922.
[56] LIU Y G, ZHOU Y M, WEN S T, et al. A strategy on selecting performance metrics for classifier evaluation[J]. International Journal of Mobile Computing and Multimedia Communications, 2014, 6(4): 20-35.
[57] LIU P P, LI H, REN Y M, et al. A novel framework for multimodal named entity recognition with multi-level alignments[EB/OL].(2023-05-15)[2023-06-18].https:∥doi.org/10.48550/arxiv.2305.08372.
[58] ZHANG Z X, MAI W X, XIONG H L, et al. A token-wise graph-based framework for multimodal named entity recognition[C]∥2023 IEEE International Conference on Multimedia and Expo (ICME).Piscatawy: IEEE, 2023: 2153-2158.
[59] XU B, HUANG S, DU M, et al. Different data, different modalities! reinforced data splitting for effective multimodal information extraction from social media posts[C]∥Proceedings of the 29th International Conference on Computational Linguistics. Stroudsburg: ACL, 2022:1855-1864.
[60] ZHANG X, YUAN J L, LI L, et al. Reducing the bias of visual objects in multimodal named entity recognition[C]∥Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. New York:ACM, 2023: 958-966.
[61] WANG J, YANG Y, LIU K Y, et al. M3S: scene graph driven multi-granularity multi-task learning for multi-modal NER[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 31: 111-120.
Similar References:
Memo

-

Last Update: 2024-03-08
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)