STATISTICS

Viewed1195

Downloads1069

Low-rank Sparse Representation Based on Elastic Least Squares Regression Learning
[1]WU Jigang,LI Miaojun,ZHAO Shuping.Low-rank Sparse Representation Based on Elastic Least Squares Regression Learning[J].Journal of Zhengzhou University (Engineering Science),2023,44(06):25-32.[doi:10.13705/j.issn.1671-6833.2023.03.011]
Copy
References:
[1] MA J J, ZHOU S S. Discriminative least squares regression for multiclass classification based on within-class scatter minimization[ J] . Applied Intelligence, 2022, 52 (1) : 622-635.
[2] 蔡雨虹. 鉴别性稀疏与低秩表示的算法研究[ D] . 无 锡: 江南大学, 2021.
 CAI Y H. Algorithm research on discriminative sparse and low-rank representation [ D] . Wuxi: Jiangnan University, 2021.
 [3] WEN J, XU Y, LI Z Y, et al. Inter-class sparsity based discriminative least square regression [ J ] . Neural Networks, 2018, 102: 36-47. 
[4] ZHANG X Y, WANG L F, XIANG S M, et al. Retargeted least squares regression algorithm[ J] . IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9) : 2206-2213.
[5] ZHANG Z, LAI Z H, XU Y, et al. Discriminative elastic-net regularized linear regression [ J] . IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2017, 26(3) : 1466-1481. 
[6] ZHAO S P, WU J G, ZHANG B, et al. Low-rank interclass sparsity based semi-flexible target least squares regression for feature representation [ J] . Pattern Recognition, 2022, 123: 108346. 
[7] 朱文生, 何显文. 结合加权低秩表示和 L1 范数的图 像混合去噪[ J] . 赣南师范大学学报, 2022, 43( 3) : 116-120. 
ZHU W S, HE X W. Image hybrid denoising via weighted low-rank representation and L1 -norm [ J] . Journal of Gannan Normal University, 2022, 43(3) : 116-120. 
[8] PENG Y L, ZHANG L, LIU S G, et al. Kernel negative ε dragging linear regression for pattern classification[ J] . Complexity, 2017, 2017: 1-14. 
[9] 赵雯, 吴小俊. 基于鉴别性低秩表示及字典学习的鲁 棒人脸 识 别 算 法 [ J ] . 计 算 机 应 用 研 究, 2017, 34 (10) : 3157-3161.
 ZHAO W, WU X J. Robust face recognition of discriminative low-rank representation with dictionary learning [ J ] . Application Research of Computers, 2017, 34 (10) : 3157-3161.
 [10] BAO J Q, LAI Z H, LI X C. Relaxed local preserving regression for image feature extraction[ J] . Multimedia Tools and Applications, 2021, 80(3) : 3729-3748. 
[11] FANG X Z, TENG S H, LAI Z H, et al. Robust latent subspace learning for image classification [ J ] . IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6) : 2502-2515.
 [12] 杨章静, 王文博, 黄璞, 等. 基于潜子空间去噪的子 空间学 习 图 像 分 类 方 法 [ J] . 计 算 机 科 学 与 探 索, 2021, 15(12) : 2374-2389. 
YANG Z J, WANG W B, HUANG P, et al. Denoising latent subspace based subspace learning for image classification[ J] . Journal of Frontiers of Computer Science and Technology, 2021, 15(12) : 2374-2389. 
[13] 钟堃琰,刘惊雷. 基于低秩类间稀疏判别最小二乘回 归的图像分类[ J] . 山东大学学报(理学版) , 2022, 57 (7) :1-13.
 ZHONG K Y, LIU J L. Image classification based on low-rank inter-class sparsity discriminant least squares regression[ J] . Journal of Shandong University(Natural Science) , 2022, 57(7) :1-13. 
[14] CHEN Z, WU X J, KITTLER J. Fisher discriminative least squares regression for image classification [ EB / OL] . ( 2019 - 07 - 11) [ 2022 - 10 - 05] . https:∥arxiv. org / abs/ 1903. 07833.
 [15] FANG X Z, HAN N, WU J G, et al. Approximate lowrank projection learning for feature extraction[ J] . IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11) : 5228-5241.
 [16] 王杰, 李胜光, 宋一帆, 等. 图像去模糊的自适应交 替方向乘子重叠组稀疏方法[ J] . 郑州大学学报( 工 学版) , 2018, 39(5) : 52-57, 78. 
WANG J, LI S G, SONG Y F, et al. Image deblurring using adaptive alternate direction multiplier overlapping group sparsity method[ J] . Journal of Zhengzhou University (Engineering Science) , 2018, 39(5) : 52-57, 78.
 [17] CHEN Z, WU X J, KITTLER J. Low-rank discriminative least squares regression for image classification[ J] . Signal Processing, 2020, 173: 107485. 
[18] MENG M, LAN M C, YU J, et al. Constrained discriminative projection learning for image classification [ J ]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2020, 29: 186-198. [19] CHEN Z, WU X J, CAI Y H, et al. Sparse non-negative transition subspace learning for image classification [ J] . Signal Processing, 2021, 183: 107988.
 [20] 姚欣, 邢砾云, 辛平. 基于小波特征提取与深度学习 的微电网故障诊断与分类方法[ J] . 智慧电力, 2021, 49(12) : 17-24. 
YAO X, XING L Y, XIN P. Fault diagnosis and classification of microgrid based on wavelet feature extraction and deep learning[J]. Smart Power, 2021, 49(12): 17-24.
Similar References:
Memo

-

Last Update: 2023-10-22
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)