STATISTICS

Viewed1171

Downloads1234

Fault Diagnosis of Power Cable Based on 1DCNN-BiLSTM
[1]GAO Chao,LIU Zehui,CAO Dong,et al.Fault Diagnosis of Power Cable Based on 1DCNN-BiLSTM[J].Journal of Zhengzhou University (Engineering Science),2023,44(05):86-92.[doi:10.13705/j.issn.1671-6833.2023.02.011]
Copy
References:
[1] 黄夏, 梁日干, 杨毅, 等. 配电电缆故障诊断方法研 究[ J] . 电工技术, 2021(7) : 72-73. 
HUANG X, LIANG R G, YANG Y, et al. Research on fault diagnosis method of distribution cable [ J] . Electric engineering, 2021(7) : 72-73. 
[2] 张伟, 何邦乐, 王东源, 等. LIRA 在输电电缆故障诊 断中的研究与应用[ J] . 电力大数据, 2021, 24( 11) : 23-31. 
ZHANG W, HE B L, WANG D Y, et al. Research and application of LIRA in transmission cable fault diagnosis [ J ] . Power Systems and Big Data, 2021, 24 (11) : 23-31. 
[3] 肖旰, 周莉, 李敬兆, 等. 基于 EEMD 融合 BAS-CNN 的高压电缆故障诊断[ J] . 电子测量技术, 2022, 45 (4) : 160-167. 
XIAO G, ZHOU L, LI J Z, et al. High-voltage cable fault diagnosis based on EEMD and BAS-CNN[ J]. Electronic Measurement Technology, 2022, 45(4): 160-167.
 [4] 任志玲, 张媛媛. 矿下电缆故障诊断的能量熵和 PSOBP 算 法 [ J ] . 系 统 仿 真 学 报, 2015, 27 ( 5 ) : 1044 -1049. 
REN Z L, ZHANG Y Y. Energy entropy and particle swarm optimization BP neural network of fault diagnosis techniques of coal mine cable[ J] . Journal of System Sim- ulation, 2015, 27(5) : 1044-1049. 
[5] 高金峰, 秦瑜瑞, 殷红德. 基于小波包变换和支持向 量机的故障选线方法[ J] . 郑州大学学报( 工学版) , 2020, 41(1) : 63-69. 
GAO J F, QIN Y R, YIN H D. Fault line selection based on wavelet packet transform and support vector machine [ J] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(1) : 63-69. 
[6] 苏立. 基于 HHT 变换和 FOALSSVM 的电缆故障诊断 [ J] . 计算机与现代化, 2017(9) : 96-101, 105. 
SU L. Cable fault diagnosis based on HHT transform and FOALSSVM [ J ] . Computer and Modernization, 2017 (9) : 96-101, 105. 
[7] 林伟, 罗群, 陈龑斌. 基于深度学习算法的大型飞机 电缆故障识别[ J] . 机械设计与制造工程, 2022, 51 (1) : 62-66. 
LIN W, LUO Q, CHEN Y B. Cable fault identification of large aircraft based on deep learning algorithm[ J] . Machine Design and Manufacturing Engineering, 2022, 51 (1) : 62-66.
 [8] 汪颖, 卢宏, 杨晓梅, 等. 堆叠自动编码器与 S 变换 相结合的电缆早期故障识别方法[ J] . 电力自动化设 备, 2018, 38(8) : 117-124. 
WANG Y, LU H, YANG X M, et al. Cable incipient fault identification based on stacked autoencoder and Stransform [ J ] . Electric Power Automation Equipment, 2018, 38(8) : 117-124. 
[9] 王坤. 基于深度学习的电力电缆故障定位技术[ D] . 西安: 西安电子科技大学, 2020. 
WANG K. Power cable fault location technology based on deep learning[D] . Xi′an: Xidian University, 2020. 
[10] 唐金锐, 尹项根, 张哲, 等. 配电网故障自动定位技术 研究综述[J]. 电力自动化设备, 2013, 33(5): 7-13. 
TANG J R, YIN X G, ZHANG Z, et al. Survey of fault location technology for distribution networks[ J] . Electric Power Automation Equipment, 2013, 33(5) : 7-13.
 [11] ALBERTO R,MARKUS H,FRANCO S,et al. A study on the effects of recursive convolutional layers in convolutional neural networks[J]. Neurocomputing, 2021, 460: 59-70.
[12] MESHRAM S, KUMAR M A. Long short-term memory network for learning sentences similarity using deep contextual embeddings[ J] . International Journal of Information Technology, 2021, 13: 1633-1641.
 [13] 卜佑军, 张桥, 陈博, 等. 基于 CNN 和 BiLSTM 的钓 鱼 URL 检测技术研究[ J] . 郑州大学学报( 工学版) , 2021, 42(6) : 14-20. 
BU Y J, ZHANG Q, CHEN B, et al. Research on phishing URL detection technology based on CNN-BiLSTM [ J] . Journal of Zhengzhou Uni
Similar References:
Memo

-

Last Update: 2023-09-04
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)