[1] HOWELL L L. Compliant mechanisms[ M] . New York: Wiley, 2001. [2] 张志刚, 周翔, 房占鹏, 等. 基于绝对节点坐标方法 的柔顺机 构 动 力 学 建 模 与 仿 真 [ J] . 郑 州 大 学 学 报 (工学版) , 2020, 41(2) : 50-55.
ZHANG Z G, ZHOU X, FANG Z P, et al. Dynamics modeling and simulation of compliant mechanisms using absolute nodal coordinate formulation [ J ] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41 (2) : 50-55.
[3] REISSNER E. On one-dimensional finite-strain beam theory: the plane problem [ J] . Zeitschrift Für Angewandte Mathematik Und Physik ZAMP, 1972, 23 ( 5 ) : 795 -804.
[4] SIMO J C. A finite strain beam formulation. The threedimensional dynamic problem. Part I [ J ] . Computer Methods in Applied Mechanics and Engineering, 1985, 49(1) : 55-70.
[5] SIMO J C, VU-QUOC L. A three-dimensional finitestrain rod model. part II: computational aspects [ J ] . Computer Methods in Applied Mechanics and Engineering, 1986, 58(1) : 79-116.
[6] SHABANA A A. ANCF consistent rotation-based finite element formulation [ J ] . Journal of Computational and Nonlinear Dynamics, 2016, 11(1) : 014502.
[7] CRISFIELD M A, JELENI G. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation [ J ] . Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 455 (1983) : 1125-1147.
[8] ZUPAN E, SAJE M, ZUPAN D. The quaternion-based three-dimensional beam theory[ J] . Computer Methods in Applied Mechanics and Engineering, 2009, 198( 49 / 50 / 51 / 52) : 3944-3956.
[9] GHOSH S, ROY D. Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam[ J] . Computer Methods in Applied Mechanics and Engineering, 2008, 198(3 / 4) : 555-571.
[10] SHABANA A A. Uniqueness of the geometric representation in large rotation finite element formulations[ J] . Journal of Computational and Nonlinear Dynamics, 2010, 5 (4) : 044501.
[11] ZHAO Z H, REN G X. A quaternion-based formulation of Euler-Bernoulli beam without singularity [ J] . Nonlinear Dynamics, 2012, 67(3) : 1825-1835.
[12] FAN W, ZHU W D, REN H. A new singularity-free formulation of a three-dimensional Euler-bernoulli beam using Euler parameters[ J] . Journal of Computational and Nonlinear Dynamics, 2016, 11(4) : 041013.
[13] ZHU W D, REN H, XIAO C. A nonlinear model of a slack cable with bending stiffness and moving ends with application to elevator traveling and compensation cables [ J ] . Journal of Applied Mechanics, 2011, 78 ( 4 ) : 041017.
[14] FAN W. An efficient recursive rotational-coordinate-based formulation of a planar Euler-Bernoulli beam[ J] . Multibody System Dynamics, 2021, 52(2) : 211-227.
[15] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies: technical report[R] . Chicago: Department of Mechanical Engineering, University of Illinois, 1996.
[16] 兰朋, 於祖庆, 赵欣. Bzier 和 B-spline 曲线的绝对结 点坐标 列 式 有 限 元 离 散 方 法 [ J] . 机 械 工 程 学 报, 2012, 48(17) : 128-134.
LAN P, YU Z Q, ZHAO X. Using absolute nodal coordinate formulation elements to model Bzier and B-spline curve for finite element analysis[ J] . Journal of Mechanical Engineering, 2012, 48(17) : 128-134.
[17] MATTIASSON K. Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals[ J] . International Journal for Numerical Methods in Engineering, 1981, 17(1) : 145-153.
[18] OMAR M A, SHABANA A A. A two-dimensional shear deformable beam for large rotation and deformation problems[ J ] . Journal of Sound and Vibration, 2001, 243 (3) : 565-576.