STATISTICS

Viewed1764

Downloads1106

Lightweight Surface Defect Detection Method of Metal Products Based on YOLOv5s
[1]JIA Yunfei,ZHENG Hongmu,LIU Shanliang.Lightweight Surface Defect Detection Method of Metal Products Based on YOLOv5s[J].Journal of Zhengzhou University (Engineering Science),2022,43(05):31-38.[doi:10.13705/j.issn.1671-6833.2022.05.001]
Copy
References:
[1] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[ J] . IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9) :1904-1916. 
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [ C] ∥2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: ACM, 2014: 580-587.
[3] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with regio proposal networks[ J] . IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6) : 1137 -1149. 
[4] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB / OL] . ( 2018 - 04 - 08) [ 2021 - 09- 01] . https: / / arxiv. org / abs/ 1804. 02767.
[5] ZHOU P, NI B B, GENG C, et al. Scale-transferrable object detection[ C] / / 2018 IEEE / CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 528-537. 
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[ C] / / European Conference on Computer Vision. Cham: Springer, 2016:21-37. 
[7] 程旭, 宋晨, 史金钢, 等. 基于深度学习的通用目 标检测 研 究 综 述 [ J] . 电 子 学 报, 2021, 49 ( 7) : 1428-1438. 
CHENG X, SONG C, SHI J G, et al. A survey of generic object detection methods based on deep learning [J]. Acta electronica sinica,2021,49(7): 1428-1438. 
[8] 郝用兴, 李泽坤, 张太萍, 等. 改进 Faster R-CNN 对铝型材表面瑕疵的检测 [ J] . 工 具 技 术, 2021, 55(3) : 76-80. 
HAO Y X, LI Z K, ZHANG T P, et al. Detection of surface defect of aluminum profile by improved faster R-CNN [ J ] . Tool engineering, 2021, 55 ( 3 ) : 76-80. 
[9] 程婧怡, 段先华, 朱伟. 改进 YOLOv3 的金属表面 缺陷检测研究[ J] . 计算机工程与应用, 2021, 57 (19) : 252-258. 
CHENG J Y, DUAN X H, ZHU W. Research on metal surface defect detection by improved YOLOv3[ J] . Computer engineering and applications, 2021, 57 (19) : 252-258. 
[10] LI Y, XU J B. Electronic product surface defect detection based on a MSSD network[ C] / / 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2020: 773-777. 
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C] / / 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 
[12] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C] / / 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
[13] 陈友升, 周介祺, 梁敏健, 等. 基于 YOLOv5 视觉 感知的实时叉车驾驶操作行为识别方法[ J] . 自动 化与信息工程, 2021, 42(3) : 21-26. 
CHEN Y S, ZHOU J Q, LIANG M J, et al. Real time forklift driving operation behavior recognition method based on YOLOv5 visual perception [ J] . Automation & information engineering, 2021, 42(3) : 21-26. 
[14] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB / OL] . ( 2015 - 02 - 11) [ 2021 - 09 - 16] . https: / / arxiv. org / abs/ 1502. 03167. 
[15] SHI X H, HU J, LEI X Y, et al. Detection of flying birds in airport monitoring based on improved YOLOv5 [C] / / 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). Piscataway: IEEE, 2021: 1446-1451.
[16] DETTMERS T, ZETTLEMOYER L. Sparse networks from scratch: faster training without losing performance [EB / OL] . (2019-06-13) [ 2021- 09- 14] . https: / / arxiv. org / abs/ 1907. 04840. 
[17] 周立君, 刘宇, 白璐, 等. 使用 TensorRT 进行深度 学习推理[ J] . 应用光学, 2020, 41(2) : 337-341. ZHOU L J, LIU Y, BAI L, et al. Using TensorRT for deep learning and inference applications [ J] . Journal of applied optics, 2020, 41(2) : 337-341. 
[18] 张震, 李浩方, 李孟洲, 等. 改进 YOLOv3 算法与 人体信息数据融合的视频监控检测方法[ J] . 郑州 大学学报(工学版) , 2021, 42(1) : 28-34. 
ZHANG Z, LI H F, LI M Z, et al. Video surveillance detection method based on improved YOLOv3 algorithm and human body information data fusion[J]. Journal of Zhengzhou university ( engineering science), 2021, 42 (1): 28-34. 
[19] LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C] / / 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2755-2763.
[20] 陈建强, 刘明宇, 符秦沈, 等. 基于深度学习的热 轧钢带表 面 缺 陷 检 测 方 法 [ J] . 自 动 化 与 信 息 工 程, 2019, 40(4) : 11-16, 19. CHEN J Q, LIU M Y, FU Q S, et al. Hot rolled steel strip surface defect detection method based on deep learning [ J] . Automation & information engineering, 2019, 40(4) : 11-16, 19.
Similar References:
Memo

-

Last Update: 2022-08-20
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)