STATISTICS

Viewed2024

Downloads1422

Network Intrusion Detection Method Based on DBSCAN_GAN_XGBoost
[1]WANG Zumin,WANG Donghao,LIANG Xia,et al.Network Intrusion Detection Method Based on DBSCAN_GAN_XGBoost[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):44-51.[doi:10.13705/j.issn.1671-6833.2022.03.006]
Copy
References:
[1] TSIROPOULOU E E,BARAS J S,PAPAVASSILIOU S, et al. On the mitigation of interference imposed by intruders in passive RFID networks[C] / / Decision and Game Theory for Security. Berlin:Springer,2016: 62-80.
[2] AMARAL A A,MENDES L D S,ZARPELÃO B B,et al. Deep IP flow inspection to detect beyond network anomalies[J]. Computer communications,2017,98:80-96. 
[3] PAJOUH H H,DASTGHAIBYFARD G,HASHEMI S. Two-tier network anomaly detection model: a machine learning approach[ J] . Journal of intelligent information systems,2017,48(1) :61-74. 
[4] EBENUWA S H,SHARIF M S,ALAZAB M,et al. Variance ranking attributes selection techniques for binary classification problem in imbalance data[ J] . IEEE access,2019,7:24649-24666. 
[5] 王磊,刘雨,刘志中,等. 处理不平衡数据的聚类欠 采样 加 权 随 机 森 林 算 法 [ J ] . 计 算 机 应 用 研 究, 2021,38(5) :1398-1402.
[6] 高忠石,苏旸,柳玉东. 基于 PCA-LSTM 的入侵检测研 究[J]. 计算机科学,2019,46(增刊 2):473-476,492.
[7] 张仁杰,陈伟,杭梦鑫,等. 基于变分自编码器的不 平衡样本异常流量检测[ J] . 计算机科学,2021,48 (7) :62-69.
[8] 王垚,孙国梓. 基于聚类和实例硬度的入侵检测过采 样方法[J]. 计算机应用,2021,41(6):1709-1714.
[9] 李小剑,谢 晓 尧, 徐 洋. 网 络 流 量 异 常 检 测 方 法: SSAE-IWELM-AdaBoost[ J ] . 武 汉 大 学 学 报 ( 理 学 版) ,2020,66(2) :126-134.
[10] 冯英引,师智斌. 不平衡数据下基于 CNN 的网络入 侵检测[ J] . 中北大学学报( 自然科学版) ,2021,42 (4) :318-324.
[11] 王荣杰,代琪,赵佳亮,等. 不平衡数据的加权集成 分类算法[ J] . 华北理工大学学报( 自然科学版) , 2021,43(3) :125-132.
[12] 徐雪丽,段娟,肖创柏,等. 基于 CNN 和 SVM 的报文 入侵检测方法[ J] . 计算机系统应用,2020,29( 6) : 39-46.
[13] 徐伟,冷静. 基于人工蜂群算法和 XGBoost 的网络 入侵检测方法研究[ J] . 计算机应用与软件,2021, 38(3) :314-318,333. 
[14] 梁杰,陈嘉豪,张雪芹,等. 基于独热编码和卷积神 经网络的异常检测 [ J] . 清华大学学报 ( 自然科学 版) ,2019,59(7) :523-529. 
[15] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[ C] / / Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining ( KDD - 96 ) . Portland: KDD, 1996: 226-231.
[16] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [ C] / / 2014 Conference and Workshop on Neural Information Processing Systems. Montreal:NIPS,2014:27-37. 
[17] CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system [ C] / / Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
[18] MOUSTAFA N,SLAY J. UNSW-NB15:a comprehensive data set for network intrusion detection systems ( UNSW-NB15 network data set) [ C] / / 2015 Military Communications and Information Systems Conference ( MilCIS). Piscataway:IEEE,2015:1-6.
Similar References:
Memo

-

Last Update: 2022-05-02
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)