[1] ZHOU Z, CHEN X, LI E, et al. Edge intelligence: pav ing the last mile of artificial intelligence with edge compu ting[J]. Proceedings of the IEEE, 2019, 107(8): 1738-1762. [2] TABATABAEE MALAZI H, CHAUDHRY S R, KAZMI A, et al. Dynamic service placement in multi-access edge computing: a systematic literature review[J]. IEEE Ac cess, 2022, 10: 32639-32688.
[3] 段文雪, 胡铭, 周琼, 等. 云计算系统可靠性研究综 述[J]. 计算机研究与发展, 2020, 57(1): 102-123.
DUAN W X, HU M, ZHOU Q, et al. Reliability in cloud computing system: a review[J]. Journal of Computer Re search and Development, 2020, 57(1): 102-123.
[4] HASHIZUME K, ROSADO D G, FERNÁNDEZ-MEDI NA E, et al. An analysis of security issues for cloud com puting[J]. Journal of Internet Services and Applications, 2013, 4(1): 1-13.
[5] BONOMI F, MILITO R, ZHU J, et al. Fog computing and its role in the Internet of Things[C]∥Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. New York: ACM, 2012: 13-16.
[6] YI S H, LI C, LI Q. A survey of fog computing: con cepts, applications and issues[C]∥Proceedings of the 2015 Workshop on Mobile Big Data. New York:ACM, 2015: 37-42.
[7] SHI W S, CAO J, ZHANG Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Jour nal, 2016, 3(5): 637-646.
[8] FIRDHOUS M, GHAZALI O, HASSAN S, et al. Fog computing: will it be the future of cloud computing? [C] ∥ The Third International Conference on Informatics & Applications. Piscataway: IEEE, 2014: 8-15.
[9] MACH P, BECVAR Z. Mobile edge computing: a survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656.
[10] JUNG H, YI J H. A unified framework issue for 5G MEC deployment[C]∥2021 International Conference on Infor mation and Communication Technology Convergence (IC TC). Piscataway: IEEE, 2021: 1507-1509.
[11] CHEN M, HAO Y X. Task offloading for mobile edge computing in software defined ultra-dense network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 587-597.
[12] REN J K, YU G D, CAI Y L, et al. Partial offloading for latency minimization in mobile-edge computing[C]∥ IEEE Global Communications Conference 2017. Piscat away: IEEE, 2017: 1-6.
[13] YANG G S, HOU L, HE X Y, et al. Offloading time op timization via Markov decision process in mobile-edge computing[J]. IEEE Internet of Things Journal, 2021, 8 (4): 2483-2493.
[14] SUN Z C, MO Y J, YU C. Graph-reinforcement-learn ing-based task offloading for multiaccess edge computing [J]. IEEE Internet of Things Journal, 2023, 10(4): 3138-3150.
[15] SHI Y, CHEN S Z, XU X. MAGA: a mobility-aware computation offloading decision for distributed mobile cloud computing[J]. IEEE Internet of Things Journal, 2018, 5(1): 164-174.
[16]WANG B, LIU Y Q, SHOU G C, et al. Energy con sumption minimization using data compression in mobile edge computing[C]∥2020 IEEE/CIC International Con ference on Communications in China. Piscataway: IEEE, 2020: 911-916.
[17] CHEN Y, ZHANG N, ZHANG Y C, et al. Energy effi cient dynamic offloading in mobile edge computing for In ternet of Things[J]. IEEE Transactions on Cloud Compu ting, 2021, 9(3): 1050-1060.
[18] XU X L, HE C X, XU Z Y, et al. Joint optimization of offloading utility and privacy for edge computing enabled IoT[J]. IEEE Internet of Things Journal, 2020, 7(4): 2622-2629.
[19] DENG X H, SUN Z H, LI D, et al. User-centric compu tation offloading for edge computing[J]. IEEE Internet of Things Journal, 2021, 8(16): 12559-12568.
[20]WAN S H, LI X, XUE Y, et al. Efficient computation offloading for Internet of Vehicles in edge computing-as sisted 5G networks[J]. The Journal of Supercomputing, 2020, 76(4): 2518-2547.
[21]李云, 高倩, 姚枝秀, 等. 移动边缘计算中智能服务 编排和算网资源分配联合优化方法[J]. 通信学报, 2023, 44(7): 51-63.
LI Y, GAO Q, YAO Z X, et al. Joint optimization meth od of intelligent service arrangement and computing-net working resource allocation for MEC[J]. Journal on Com munications, 2023, 44(7): 51-63.
[22] XING H, LIU L, XU J, et al. Joint task assignment and resource allocation for D2D-enabled mobile-edge compu ting[J]. IEEE Transactions on Communications, 2019, 67(6): 4193-4207.
[23] SUN L, WANG J, LIN B. Task allocation strategy for MEC-enabled IIoTs via Bayesian network based evolution ary computation[J]. IEEE Transactions on Industrial In formatics, 2021, 17(5): 3441-3449.
[24] TENG Y L, CHENG K, ZHANG Y, et al. Mixed-times cale joint computational offloading and wireless resource allocation strategy in energy harvesting multi-MEC server systems[J]. IEEE Access, 2019, 7: 74640-74652.
[25] LIU B H, LIU C X, PENG M G. Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT net works[J]. IEEE Journal on Selected Areas in Communi cations, 2021, 39(4): 1015-1027.
[26] MAHMUD R, SRIRAMA S N, RAMAMOHANARAO K, et al. Quality of Experience (QoE)-aware placement of applications in Fog computing environments[J]. Journal of Parallel and Distributed Computing, 2019, 132: 190-203.
[27] MAHMUD R, SRIRAMA S N, RAMAMOHANARAO K, et al. Profit-aware application placement for integrated Fog-Cloud computing environments[J]. Journal of Paral lel and Distributed Computing, 2020, 135: 177-190.
[28] LI S Y, HUANG J W, HU J, et al. QoE-DEER: a QoE aware decentralized resource allocation scheme for edge computing[J]. IEEE Transactions on Cognitive Commu nications and Networking, 2022, 8(2): 1059-1073.
[29] ZHANG Y, HOSSAIN M S, GHONEIM A, et al. COC ME: content-oriented caching on the mobile edge for wireless communications[J]. IEEE Wireless Communica tions, 2019, 26(3): 26-31.
[30] ZHANG J, HU X P, NING Z L, et al. Joint resource al location for latency-sensitive services over mobile edge computing networks with caching[J]. IEEE Internet of Things Journal, 2019, 6(3): 4283-4294.
[31] MENG X L, WANG W, WANG Y T, et al. Closed-form delay-optimal computation offloading in mobile edge com puting systems[J]. IEEE Transactions on Wireless Com munications, 2019, 18(10): 4653-4667.
[32] YANG S, LIU J T, ZHANG F, et al. Caching-enabled computation offloading in multi-region MEC network via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(21): 21086-21098.
[33] STHAPIT S, THOMPSON J, ROBERTSON N M, et al. Computational load balancing on the edge in absence of cloud and fog[J]. IEEE Transactions on Mobile Compu ting, 2019, 18(7): 1499-1512.
[34] ALE L H, ZHANG N, WU H C, et al. Online proactive caching in mobile edge computing using bidirectional deep recurrent neural network[J]. IEEE Internet of Things Journal, 2019, 6(3): 5520-5530.
[35]WANG H M, LI Y X, ZHAO X Q, et al. An algorithm based on Markov chain to improve edge cache hit ratio for blockchain-enabled IoT[J]. China Communications, 2020, 17(9): 66-76.
[36] SAPUTRA Y M, HOANG D T, NGUYEN D N, et al. Distributed deep learning at the edge: a novel proactive and cooperative caching framework for mobile edge net works[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1220-1223.
[37] ZHENG Z J, SONG L Y, HAN Z, et al. A Stackelberg game approach to proactive caching in large-scale mobile edge networks[J]. IEEE Transactions on Wireless Com munications, 2018, 17(8): 5198-5211.
[38] SUFYAN F, BANERJEE A. Computation offloading for dis tributed mobile edge computing network: a multiobjective approach[J]. IEEE Access, 2020, 8: 149915-149930.
[39]WANG J P, WANG M F, ZHANG Z Y, et al. Toward a trust evaluation framework against malicious behaviors of industrial IoT[J]. IEEE Internet of Things Journal, 2022, 9(21): 21260-21277.
[40] IFTIKHAR A, QURESHI K N, ALTALBE A A, et al. Security provision by using detection and prevention meth ods to ensure trust in edge-based smart city networks[J]. IEEE Access, 2023, 11: 137529-137547.
[41] HOUDA Z A E, BRIK B, KSENTINI A, et al. A MEC based architecture to secure IoT applications using federa ted deep learning[J]. IEEE Internet of Things Magazine, 2023, 6(1): 60-63.
[42] GYAMFI E, JURCUT A D. Novel online network intru sion detection system for industrial IoT based on OI-SVDD and AS-ELM[J]. IEEE Internet of Things Journal, 2023, 10(5): 3827-3839.
[43] HAN X, TIAN D X, ZHOU J S, et al. Privacy-preser ving proxy re-encryption with decentralized trust manage ment for MEC-empowered VANETs[J]. IEEE Transac tions on Intelligent Vehicles, 2023, 8(8): 4105-4119.
[44] MADDIKUNTA P K R, PHAM Q V, NGUYEN D C, et al. Incentive techniques for the Internet of Things: a sur vey[J]. Journal of Network and Computer Applications, 2022, 206: 103464.
[45] MURSIA P, SCIANCALEPORE V, GARCIA-SAAVE DRA A, et al. RISMA: reconfigurable intelligent sur faces enabling beamforming for IoT massive access[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 1072-1085.
[46] AAZAM M, ZEADALLY S, HARRAS K A. Deploying fog computing in industrial Internet of Things and industry 4.0[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4674-4682.
[47] HEWA T, GÜR G, KALLA A, et al. The role of block chain in 6G: challenges, opportunities and research di rections[C]∥2020 2nd 6G Wireless Summit (6G SUM MIT). Piscataway: IEEE, 2020: 1-5.
[48] ZHU Y X, ZHENG G, WONG K K. Blockchain-empow ered decentralized storage in air-to-ground industrial net works[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3593-3601.
[49]WANG K Y, TU Z Y, JI Z Z, et al. Faster service with less resource: a resource efficient blockchain framework for edge computing[J]. Computer Communications, 2023, 199: 196-209.
[50] TULKINBEKOV K, KIM D H. Blockchain-enabled ap proach for big data processing in edge computing[J]. IEEE Internet of Things Journal, 2022, 9(19): 18473-18486.
[51] CAO J, MA M D, LI H, et al. A survey on security as pects for 3GPP 5G networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 170-195.
[52] QI Q, CHEN X M, KHALILI A, et al. Integrating sens ing, computing, and communication in 6G wireless net works: design and optimization[J]. IEEE Transactions on Communications, 2022, 70(9): 6212-6227.
[53]刘昊, 张景超, 毛万登, 等. 智慧换流站云边协同数 据交互方法[J]. 郑州大学学报(工学版), 2022, 43 (5): 104-110.
LIU H, ZHANG J C, MAO W D, et al. Cloud edge col laboration data interaction method of intelligent converter station[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(5): 104-110.
[54]伏玉笋, 杨根科. 无线超可靠低时延通信:关键设计 分析与挑战[J]. 通信学报, 2020, 41(8): 187-203.
FU Y S, YANG G K. Wireless ultra-reliable and low-laten cy communication: key design analysis and challenge[J]. Journal on Communications, 2020, 41(8): 187-203.
[55] LIN W W, HUANG T S, LI X, et al. Energy-efficient computation offloading for UAV-assisted MEC: a two stage optimization scheme[J]. ACM Transactions on In ternet Technology, 2022, 22(1): 1-23.