STATISTICS

Viewed929

Downloads817

Traffic Sign Detection Based on Lightweight YOLOv5
[1]ZHANG Zhen,WANG Xiaojie,JIN Zhihua,et al.Traffic Sign Detection Based on Lightweight YOLOv5[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):12-19.[doi:10.13705/j.issn.1671-6833.2023.05.041]
Copy
References:
[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[2] GIRSHICK R. Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2016: 1440-1448.
[3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] HE K M, GKIOXARI G, DOLLR P, et al. Mask R-CNN[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2980-2988.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2016: 779-788.
[6] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2017: 6517-6525.
[7] REDMON J, FARHADI A. YOLOV3: An incremental improvement[C]∥Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Pisca-taway: IEEE, 2018: 1-6.
[8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2023-12-18]. https:∥arxiv.org/abs/2004.10934.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]∥European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[10] SUDHA M, GALDIS PUSHPARATHI D V P. Traffic sign detection and recognition using RGSM and a novel feature extraction method[J]. Peer-to-Peer Networking and Applications, 2021, 14(4): 2026-2037.
[11] HAN C, GAO G Y, ZHANG Y. Real-time small traffic sign detection with revised faster-RCNN[J]. Multimedia Tools and Applications, 2019, 78(10): 13263-13278.
[12] WAN J X, DING W, ZHU H L, et al. An efficient small traffic sign detection method based on YOLOv3[J]. Journal of Signal Processing Systems, 2021, 93(8): 899-911.
[13] 尹靖涵, 瞿绍军, 姚泽楷, 等. 基于YOLOv5的雾霾天气下交通标志识别模型[J]. 计算机应用, 2022, 42(9): 2876-2884.
YIN J H, QU S J, YAO Z K, et al. Traffic sign recognition model in haze weather based on YOLOv5[J]. Journal of Computer Applications, 2022, 42(9): 2876-2884.
[14] 张毅,龚致远,韦文闻.基于改进Faster R-CNN模型的交通标志检测[J]. 激光与光电子学进展, 2020, 57(18): 173-181.
ZHANG Y, GONG Z Y, WEI W W. Traffic sign detection based on improved faster R-CNN model[J]. Laser &Optoelectronics Progress, 2020, 57(18): 173-181.
[15] 李宇琼, 周永军, 蒋淑霞, 等. 基于注意力机制的交通标志识别[J]. 电子测量技术, 2022, 45(8): 116-120.
LI Y Q, ZHOU Y J, JIANG S X, et al. Traffic sign recognition based on attention mechanism[J]. Electronic Measurement Technology, 2022, 45(8): 116-120.
[16] 郭继峰, 孙文博, 庞志奇, 等. 一种改进YOLOv4的交通标志识别算法[J]. 小型微型计算机系统, 2022, 43(7): 1471-1476.
GUO J F, SUN W B, PANG Z Q, et al. Improved traffic sign recognition algorithm for YOLOv4[J]. Journal of Chinese Computer Systems, 2022, 43(7): 1471-1476.
[17] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[18] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2020: 1577-1586.
[19] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2020: 10778-10787.
[20] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. (2022-05-25)[2023-02-18].https:∥arxiv.org/abs/2205.12740.
[21] ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detection and classification in the wild[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2016: 2110-2118.

Similar References:
Memo

-

Last Update: 2024-03-08
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)