STATISTICS

Viewed1393

Downloads1343

A Review of Machine Learning-Based Methods for Database Tuning
[1]SHI Lei,LI Tian,GAO Yufei,et al.A Review of Machine Learning-Based Methods for Database Tuning[J].Journal of Zhengzhou University (Engineering Science),2024,45(01):1-11.[doi:10.13705/j.issn.1671-6833.2024.01.008]
Copy
References:
[1] 李国良, 周煊赫, 孙佶, 等. 基于机器学习的数据库技术综述[J]. 计算机学报, 2020, 43(11): 2019-2049.LI G L, ZHOU X H, SUN J, et al. A survey of machine learning based database techniques[J]. Chinese Journal of Computers, 2020, 43(11): 2019-2049.
[2] FRANÇOIS-LAVET V, HENDERSON P, ISLAM R, et al. An introduction to deep reinforcement learning[J]. Foundations and Trends in Machine Learning, 2018, 11(3/4): 219-354.
[3] 黄万伟, 郑向雨, 张超钦, 等. 基于深度强化学习的智能路由技术研究[J]. 郑州大学学报(工学版), 2023, 44(1): 44-51.HUANG W W, ZHENG X Y, ZHANG C Q, et al. Research on intelligent routing technology based on deep reinforcement learning[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(1): 44-51.
[4] ZHENG C H, DING Z H, HU J L. Self-tuning perfor-mance of database systems with neural network[C]∥10th International Conference on Intelligent Computing. Piscataway: IEEE, 2014: 1-12.
[5] ZHANG X Y, WU H, LI Y, et al. Towards dynamic and safe configuration tuning for cloud databases[C]∥Proceedings of the 2022 International Conference on Management of Data. New York: ACM, 2022: 631-645.
[6] KUNJIR M, BABU S. Black or white how to develop an AutoTuner for memory-based analytics[C]∥Procee-dings of the 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020: 1667-1683.
[7] SCHNAITTER K, POLYZOTIS N. Semi-automatic index tuning: keeping DBAs in the loop[J]. Proceedings of the VLDB Endowment, 2012, 5(5): 478-489.
[8] FEKRY A, CARATA L, PASQUIER T, et al. To tune or not to tune in search of optimal configurations for data analytics[C]∥Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining. New York: ACM, 2020: 2494-2504.
[9] FEKRY A, CARATA L, PASQUIER T, et al. Tuneful: an online significance-aware configuration tuner for big data analytics[EB/OL]. (2020-01-22)[2023-08-01]. https:∥arxiv.org/abs/2001.08002.
[10] MARCO A, BERKENKAMP F, HENNIG P, et al. Virtual vs. real: trading off simulations and physical experiments in reinforcement learning with Bayesian optimization[C]∥2017 IEEE International Conference on Robo-tics and Automation (ICRA). Piscataway: IEEE, 2017: 1557-1563.
[11] ZHANG J, ZHOU K, LI G L, et al. CDBTune+: an efficient deep reinforcement learning-based automatic cloud database tuning system[J]. The VLDB Journal, 2021, 30(6): 959-987.
[12] TRUMMER I. DB-BERT: a database tuning tool that “reads the manual”[C]∥Proceedings of the 2022 International Conference on Management of Data. New York: ACM, 2022: 190-203.
[13] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [EB/OL]. (2019-05-24)[2023-08-01]. https:∥arxiv.org/abs/1810.04805.
[14] HAYDEN M. MySQLTuner needs you[EB/OL]. [2023-08-01]. https:∥github.com/major/MySQLTuner-perl.
[15] XU T Y, JIN L, FAN X P, et al. Hey, you have given me too many knobs!: understanding and dealing with over-designed configuration in system software[C]∥Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. New York: ACM, 2015: 307-319.
[16] ZHU Y Q, LIU J X, GUO M Y, et al. BestConfig: tapping the performance potential of systems via automatic configuration tuning[C]∥Proceedings of the 2017 Symposium on Cloud Computing. New York: ACM, 2017: 338-350.
[17] Oracle. Oracle database online documentation 11g release2(11.2)[EB/OL]. [2023-08-01]. https:∥docs.oracle.com/cd/E11882_01/index.html.
[18] IBM. DB2 tuning overview[EB/OL]. [2023-08-01]. https:∥www.ibm.com/docs/en/sdse/6.4.0?topic=overview-db2-tuning.
[19] Microsoft. Tune applications and databases for perfor-mance in Azure SQL Database and Azure SQL Managed Instance[EB/OL]. [2023-08-01]. https:∥learn.microsoft.com/en-us/azure/azure-sql/database/performance-guidance?view=azuresql-mi.
[20] DUAN S Y, THUMMALA V, BABU S. Tuning database configuration parameters with iTuned[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 1246-1257.
[21] VAN AKEN D, PAVLO A, GORDON G J, et al. Automatic database management system tuning through large-scale machine learning[C]∥Proceedings of the 2017 ACM International Conference on Management of Data. New York: ACM, 2017: 1009-1024.
[22] TAN J, ZHANG T Y, LI F F, et al. iBTune: individua-lized buffer tuning for large-scale cloud databases[J]. Proceedings of the VLDB Endowment, 2019, 12(10): 1221-1234.
[23] MAHGOUB A, WOOD P, GANESH S, et al. Rafiki: a middleware for parameter tuning of NoSQL datastores for dynamic metagenomics workloads[C]∥Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference. New York: ACM, 2017: 28-40.
[24] KANELLIS K, DING C, KROTH B, et al. LlamaTune: sample-efficient DBMS configuration tuning[EB/OL]. (2022-05-10)[2023-08-01]. https:∥arxiv.org/abs/2203.05128v1.[25] CEREDA S, VALLADARES S, CREMONESI P, et al. CGPTuner[J]. Proceedings of the VLDB Endowment, 2021, 14(8): 1401-1413.
[26] MAHGOUB A, MEDOFF A, KUMAR R, et al. OPTIMUSCLOUD: heterogeneous configuration optimization for distributed databases in the cloud[C]∥ 2020 USENIX Annual Technical Conference. Berkeley: USENIX Association, 2020: 189-203.
[27] LIMA M I V, DE FARIAS V A E, PRACIANO F D B S, et al. Workload-aware parameter selection and perfor-mance prediction for in-memory databases[C]∥ Brazilian Symposium on Bioinformatics. Brazil: SBC, 2018: 169-180.
[28] SUI Y N, GOTOVOS A, BURDICK J, et al. Safe exploration for optimization with Gaussian processes[J] Proceedings of Machine Learning Research, 2015, 37: 997-1005.
[29] GUNASEKARAN K P, TIWARI K, ACHARYA R. Deep learning based auto tuning for database management system[EB/OL]. (2023-05-24)[2023-08-01]. https:∥arxiv.org/abs/2304.12747.
[30] 沈忱, 邰凌翔, 彭煜玮.面向自动参数调优的动态负载匹配方法[J].计算机应用, 2021, 41(3): 657-661.SHEN C, TAI L X, PENG Y W. Dynamic workload matching method for automatic parameter tuning[J]. Journal of Computer Applications, 2021, 41(3): 657-661.
[31] ISHIHARA Y, SHIBA M. Dynamic configuration tuning of working database management systems[C]∥2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech). Piscataway: IEEE, 2020: 393-397.
[32] SIEGMUND N, GREBHAHN A, APEL S, et al. Performance-influence models for highly configurable systems[C]∥Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. New York: ACM, 2015: 284-294.
[33] NAIR V, MENZIES T, SIEGMUND N, et al. Using bad learners to find good configurations[C]∥Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. New York: ACM, 2017: 257-267.
[34] RODD S F, KULKARNI U P. Adaptive self-tuning techniques for performance tuning of database systems: a fuzzy-based approach[C]∥2013 2nd International Conference on Advanced Computing, Networking and Security. Piscataway: IEEE, 2013: 124-129.
[35] TAFT R, EL-SAYED N, SERAFINI M, et al. P-store: an elastic database system with predictive provisioning[C]∥ Proceedings of the 2018 International Conference on Management of Data. New York: ACM, 2018: 205-219.
[36] BAO L, LIU X, WANG F Z, et al. ACTGAN: automatic configuration tuning for software systems with generative adversarial networks[C]∥2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). Piscataway: IEEE, 2019: 465-476.
[37] HA H, ZHANG H Y. DeepPerf: performance prediction for configurable software with deep sparse neural network[C]∥2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). Piscataway: IEEE, 2019: 1095-1106.
[38] FANG X, ZOU Y, FANG Y G, et al. A query-level distributed database tuning system with machine learning[C]∥2022 IEEE International Conference on Joint Cloud Computing (JCC). Piscataway: IEEE, 2022: 29-36.
[39] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[EB/OL]. (2013-12-19)[2023-08-01]. https:∥arxiv.org/abs/1312.5602.
[40] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[41] HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[EB/OL].(2018-12-13)[2023-08-01]. https:∥arxiv.org/abs/1812.05905.
[42] LI G L, ZHOU X H, LI S F, et al. QTune: a query-aware database tuning system with deep reinforcement learning[J]. Proceedings of the VLDB Endowment, 2019, 12: 2118-2130.
[43] CAI B Q, LIU Y, ZHANG C, et al. HUNTER: an online cloud database hybrid tuning system for personalized requirements[C]∥Proceedings of the 2022 International Conference on Management of Data. New York: ACM, 2022: 646-659.
[44] ZHANG X Y, WU H, CHANG Z, et al. ResTune: resource oriented tuning boosted by meta-learning for cloud databases[C]∥Proceedings of the 2021 International Conference on Management of Data. New York: ACM, 2021: 2102-2114.
[45] 李琳, 李玉泽, 张钰嘉, 等. 基于多估计器平均值的深度确定性策略梯度算法[J]. 郑州大学学报(工学版), 2022, 43(2): 15-21.LI L, LI Y Z, ZHANG Y J, et al. Deep deterministic policy gradient algorithm based on mean of multiple estimators[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(2): 15-21.
[46] SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]∥Proceedings of the 31st International Conference on International Conference on Machine Learning. New York: ACM, 2014: 1-9.
[47] LEE J, CHOI J, SEO S, et al. K2vTune: automatic database tuning with knob vector representation[EB/OL]. (2022-09-21)[2023-08-01]. https:∥ssrn.com/abstract=4225456.[48] JAMSHIDI P, SIEGMUND N, VELEZ M, et al. Transfer learning for performance modeling of configurable systems: an exploratory analysis[C]∥2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE). Piscataway: IEEE, 2017: 497-508.
[49] ZHANG X Y, CHANG Z, LI Y, et al. Facilitating database tuning with hyper-parameter optimization[J]. Proceedings of the VLDB Endowment, 2022, 15(9): 1808-1821.
[50] PAVLO A, ANGULO G, ARULRAJ J, et al. Self-dri-ving database management systems[C]∥ Conference on Innovative Data Systems Research. Chaminade: CIDR, 2017: 1-6.
[51] LI G L, ZHOU X H, SUN J, et al. openGauss[J]. Proceedings of the VLDB Endowment, 2021, 14(12): 3028-3042.
[52] 李国良, 周煊赫. 轩辕: AI原生数据库系统[J]. 软件学报, 2020, 31(3): 831-844.LI G L, ZHOU X H. XuanYuan: an AI-native database systems[J]. Journal of Software, 2020, 31(3): 831-844.
[53] LI G L, ZHOU X H, CAO L. Machine learning for databases[C]∥Proceedings of the First International Confe-rence on AI-ML Systems. New York: ACM, 2021: 1-2.
[54] LI G L, ZHOU X H, CAO L. AI meets database: AI4DB and DB4AI[C]∥Proceedings of the 2021 International Conference on Management of Data. New York: ACM, 2021: 2859-2866.
[55] SHI J C, CONG G, LI X L. Learned index benefits: machine learning based index performance estimation[J]. Proceedings of the VLDB Endowment, 2022, 15: 3950-3962.[56] ZHAO X Y, ZHOU X H, LI G L. Automatic database knob tuning: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12470-12490.
Similar References:
Memo

-

Last Update: 2024-01-23
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)