[1] 黄国如. 城市暴雨内涝防控与海绵城市建设辨析[ J] . 中国防汛抗旱, 2018, 28(2) : 8-14. HUANG G R. Discrimination of relationship between urban storm waterlogging prevention and sponge city construction [ J ] . China Flood & Drought Management, 2018, 28(2) : 8-14.
[2] 刘家宏,裴羽佳,梅超. 郑州“ 7·20” 特大暴雨内涝成因 及灾害 防 控 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023, 44 (2) :38-45.
LIU J H, PEI Y J, MEI CH, et al. Waterlogging cause and disaster prevention and control of " 7·20" torrential rain in Zhengzhou [ J ] . Journal of Zhengzhou University (Engineering Science) , 2023,44(2) :38-45.
[3] BROWDER G, OZMENT S, REHBERGER BESCOS I, et al. Integrating green and gray: creating next generation infrastructure[ J] . World Resources Institute, 2019: 15- 27.
[4] BARLOW D, BURRILL G, NOLFI J R. A research report on developing a community level natural resource inventory system [ M ] . Burlington: Center for Studies in Food Self-Sufficiency, 1977.
[5] WHELANS C, MAUNSELL H G, THOMPSON P. et al. Planning & management guidelines for water sensitive urban ( residential) design: consultants report prepared for the department of planning and urban development, the water authority of western australia and the environmental protection authority[R/ OL]. (1994-03-01) [2022-10-02]. htps:/ / books. google. com. sg / books? id=VqH2rQEACAAJ 19.
[6] CHARLESWORTH S M, BOOTH C A. Sustainable surface water management: a handbook for SuDS [M] . New York:Wiley, 2016.
[7] STOVIN V, POË S, DE-VILLE S, et al. The influence of substrate and vegetation configuration on green roof hydrological performance [ J ] . Ecological Engineering, 2015, 85: 159-172.
[8] 麦叶鹏, 黄国如, 解河海, 等. 基于 Hydrus-1D 模型的 LID 措施 雨 水 径 流 控 制 效 应 研 究 [ J ] . 水 利 学 报, 2022, 53(7) : 811-822. MAI Y P, HUANG G R, XIE H H, et al. Study on rainwater runoff control effect of LID measures based on Hydrus-1D[ J] . Journal of Hydraulic Engineering, 2022, 53(7) : 811-822.
[9] TANG S J, JIANG J P, ZHENG Y, et al. Robustness analysis of storm water quality modelling with LID infrastructures from natural event-based field monitoring[ J] . Science of the Total Environment, 2021, 753: 142007.
[10] HU M C, ZHANG X Q, LI Y, et al. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area [ J ] . Journal of Cleaner Production, 2019, 222: 373-380.
[11] LI Q, WANG F, YU Y, et al. Comprehensive performance evaluation of LID practices for the sponge city construction: acase study in Guangxi, China[ J] . Journal of Environmental Management, 2019, 231: 10-20.
[12] YE C L, XU Z X, LEI X H, et al. Simulation of pipeline network drainage at urban community scales based on SWMM: a case study in Fuzhou City[ J] . South-to-north Water Transfers and Water Science & Technology, 2022, 20(2) : 271-280.
[13] SIMONS F, BUSSE T, HOU J M, et al. A model for overland flow and associated processes within the hydroinformatics modelling system[ J] . Journal of Hydroinformatics, 2014, 16(2) : 375-391.
[14] 侯精明,董美君,李东来,等. 超标暴雨下城市雨水管 网排水效果———以西安市沣西新城为例[ J/ OL] . 地球 科学与环境学报,2022:1-10( 2022- 09- 07) [ 2022- 10 - 06 ] . https: / / kns. cnki. net / kcms/ detail / 61. 1423. P. 20220906. 1637. 001. html.
HOU J M, DONG M J, LI D L, et al. Drainage effect of urban drainage-pipe network under extreme rainstorms——— taking Fengxi New City in Xi′an City, China as an example[J/ OL]. Journal of Earth Sciences and Environment, 2022:1- 10( 2022- 09- 07) [ 2022- 10- 06]. https: / / kns. cnki. net / kcms/ detail / 61. 1423. P. 20220906. 1637. 001. html.
[15] GOURI R L, SRINIVAS V V, SOUMYA S N, et al. Impact assessment of land-use / land-cover changes on hydrology and storm water drain network in yelhanka watershed, Bangalore[ M] / / Lecture Notes in Civil Engineering. Singapore: Springer Nature Singapore, 2022: 279-291.
[16] DUAN H F, XICHAO G. Flooding control and hydro-energy assessment for urban stormwater drainage systems under climate change[ J] . Water Resources Management, 2019: 105-116.
[17] GRIP I, HAGHIG H S, ASPEGREN H. A methodology for the assessment of compound sea level and rainfall impact on urban drainage networks in a coastal city under climate change [ J] . City and Environment Interactions, 2021, 12: 100074.
[18] URICH C, BACH P M, SITZENFREI R, et al. Modelling Cities and water infrastructure dynamics [ J ] . Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 2013, 166(5) : 301-308.
[19] BEN-DAOUD A, BEN-DAOUD M, MOROSANU G A, et al. The use of low impact development technologies in the attenuation of flood flows in an urban area: Settat City (Morocco) as a case [ J ] . Environmental Challenges, 2022, 6: 100403.
[20] 李尤, 邸苏闯, 潘兴瑶, 等. 基于改进层次分析法的 LID 空间布局优化研究[ J] . 中国给水排水, 2020, 36 (23) : 113-120.
LI Y, DI S C, PAN X Y, et al. Spatial layout optimization of low impact development based on improved analytic hierarchy process [ J ] . China Water & Wastewater, 2020, 36(23) : 113-120.
21] XU Z X, LI P, CHENG T. LID optimization layout facilities in sponge city: a case study of Huangtaiqiao Catchment in Jinan City [ J ] . South-to-north Water Transfers and Water Science & Technology, 2022, 20 ( 3 ) : 552 -562. [22] LATIFI M, RAKHSHANDEHROO G, NIKOO M R, et al. A game theoretical low impact development optimization model for urban storm water management[ J] . Journal of Cleaner Production, 2019, 241: 118323.
[23] LU W, XIA W, SHOEMAKER C A. Surrogate global optimization for identifying cost-effective green infrastructure for urban flood control with a computationally expensive inundation model[ J] . Water Resources Research, 2022, 58(4) : 72-80.
[24] HAGHIGHI A. Loop-by-loop cutting algorithm to generate layouts for urban drainage systems [ J ] . Journal of Water Resources Planning and Management, 2013, 139 (6) : 693-703.
[25] BAKHSHIPOUR A E, BAKHSHIZADEH M, DITTMER U, et al. Hanging gardens algorithm to generate decentralized layouts for the optimization of urban drainage systems[ J] . Journal of Water Resources Planning and Management, 2019, 145(9) :66-80.
[26] BAKHSHIPOUR A, HESPEN J, HAGHIGHI A, et al. Integrating structural resilience in the design of urban drainage networks in flat areas using a simplified multiobjective optimization framework [ J] . Water, 2021, 13 (3) : 269. [27] 李芊, 张明媛, 袁永博. 基于 MOPSO 的雨水管网多目 标改建优化[ J] . 给水排水, 2016, 52(5) : 127-131. LI Q, ZHANG M Y, YUAN Y B. Multi-objective reconstruction optimization of rainwater pipe network based on MOPSO[ J] . Water & Wastewater Engineering, 2016, 52(5) : 127-131 .
[28] 杨祺琪, 张书亮, 戴强, 等. 基于 SWMM 和改进差分 进化算法的雨水管网优化方法 [ J] . 中国给水排水, 2016, 32(17) : 115-119, 124.
YANG Q Q, ZHANG S L, DAI Q, et al. Optimization of rainwater pipe network based on SWMM and improved algorithm of differential evolution [ J ] . China Water & Wastewater, 2016, 32(17) : 115-119, 124.
[29] 方咸根. 城市雨水管网多目标优化设计及韧性评估研 究[D] . 杭州: 浙江大学, 2019.
FANG X G. Investigating the multi-objective design and resilience of urban drainage design problems[ D] . Hangzhou: Zhejiang University, 2019.
[30] 郑恺原, 向小华. 基于 SWMM 和 PSO-GA 的多目标雨 水管网优化模型[ J] . 水利水电技术, 2020, 51( 9) : 24-33.
ZHENG K Y, XIANG X H. SWMM and PSO-GA-based multi-objective optimization model for rainwater pipeline network[ J] . Water Resources and Hydropower Engineering, 2020, 51(9) : 24-33.
[31] 李小平, 邱元锋, 罗金耀, 刘志标, 李青, 胡进民. 广 州市白云区岭南围排水系统优化调度研究[ J] . 中国 农村水利水电, 2005(5) : 23-26.
LI X P, QIU Y F, LUO J Y, et al. Study on optimal operation of drainage system in Lingnan enclosure of Baiyun District, Guangzhou[ J] . China Rural Water and Hydropower, 2005(5) : 23-26.
[32] ZENG X, HU T S, CAI X M, et al. Improved dynamic programming for parallel reservoir system operation optimization[ J] . Advances in Water Resources, 2019, 131: 103373.
[33] YAZDI J, CHOI H S, KIM J H. A methodology for optimal operation of pumping stations in urban drainage systems [ J ] . Journal of Hydro-Environment Research, 2016, 11: 101-112.
[34] 邓浩. 基于优化算法的梯级闸坝联合调度方法分析 [D] . 太原: 太原理工大学, 2018.
DENG H. Analysis of combined operation method of cascade sluice and dam based on optimization algorithm [D] . Taiyuan: Taiyuan University of Technology, 2018.
[35] YAN P R, ZHANG Z, LEI X H, et al. A multi-objective optimal control model of cascade pumping stations considering both cost and safety[ J] . Journal of Cleaner Production, 2022, 345: 131171.
[36] DEMIR I, KRAJEWSKI W F. Towards an integrated Flood Information System: centralized data access, analysis, and visualization [ J ] . Environmental Modelling & Software, 2013, 50: 77-84.
[37] CANILLO L J L, HERNANDEZ A A. Flood risk visualization and prediction information system: case of city Manila, Philippines [ C] / / 2021 IEEE 17th International Colloquium on Signal Processing & Its Applications. Piscataway:IEEE, 2021: 59-63.
[38] 陈琳健. 景德镇市综合洪水风险管理决策支持系统开 发方案研究[D] . 南昌: 南昌大学, 2016.
CHEN L J. Development scheme of decision support system for integrated flood risk management in Jingdezhen City[D] . Nanchang: Nanchang University, 2016.
[39] 邹明忠, 缪岳军, 张丽, 等. 圩区防洪调度预警预报 系统: 以江阴市马甲圩为例[ J] . 水利信息化, 2020 (4) : 63-67.
ZOU M Z, MIAO Y J, ZHANG L, et al. Flood dispatch control and early warning system in polder area—taking Majia Polder Area in Jiangyin City as an example [ J] . Water Resources Informatization, 2020(4) : 63-67.
[40] 张金萍, 张朝阳, 左其亭. 极端暴雨下城市内涝模拟 与应急响应能力评估[ J] . 郑州大学学报( 工学版) , 2023, 44(2) : 30-37.
ZHANG J P, ZHANG C Y, ZUO Q T. Urban waterlogging simulation and emergency response capacity evaluation under extreme rainstorms [ J] . Journal of Zhengzhou University ( Engineering Science ) , 2023, 44 ( 2 ) : 30 -37.