STATISTICS

Viewed1701

Downloads1449

Code Clone Detection Based on Transformer and Convolutional Neural Network
[1]BEN Kerong,YANG Jiahui,ZHANG Xian,et al.Code Clone Detection Based on Transformer and Convolutional Neural Network[J].Journal of Zhengzhou University (Engineering Science),2023,44(06):12-18.[doi:10.13705/j.issn.1671-6833.2023.03.012]
Copy
References:
[1] 陈秋远, 李善平, 鄢萌, 等. 代码克隆检测研究进展 [ J] . 软件学报, 2019, 30(4) : 962-980. 
CHEN Q Y, LI S P, YAN M, et al. Code clone detection: a literature review[ J] . Journal of Software, 2019, 30(4) : 962-980.
 [2] BELLON S, KOSCHKE R, ANTONIOL G, et al. Comparison and evaluation of clone detection tools[ J] . IEEE Transactions on Software Engineering, 2007, 33(9) : 577 -591.
 [3] HINDLE A, BARR E T, SU Z D, et al. On the naturalness of software[ C]∥2012 34th International Conference on Software Engineering ( ICSE ) . Piscataway: IEEE, 2012: 837-847.
 [4] CORDY J R, ROY C K. The NiCad clone detector [C]∥ 2011 IEEE 19th International Conference on Program Comprehension. Piscataway: IEEE, 2011: 219-220. 
[5] LI L Q, FENG H, ZHUANG W J, et al. CCLearner: a deep learning-based clone detection approach [ C] ∥2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). Piscataway: IEEE, 2017: 249-260. 
[6] WEI H H, LI M. Supervised deep features for software functional clone detection by exploiting lexical and syntactical information in source code[ C]∥Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York: ACM, 2017: 3034-3040. 
[7] ALON U, LEVY O, YAHAV E. CODE2SEQ: generatingsequences from structured representations of code [ EB / OL] . (2018- 08 - 04) [ 2022 - 09 - 11] . https:∥arxiv. org / abs/ 1808. 01400. 
[8] ALON U, ZILBERSTEIN M, LEVY O, et al. CODE2VEC: learning distributed representations of code[ J] . Proceedings of the ACM on Programming Languages, 2019, 3: 40. 
[9] ZENG J, BEN K R, LI X W, et al. Fast code clone detection based on weighted recursive autoencoders [ J ] . IEEE Access, 2019, 7: 125062-125078. 
[10] ZHANG J, WANG X, ZHANG H Y, et al. A novel neural source code representation based on abstract syntax tree[C]∥2019 IEEE / ACM 41st International Conference on Software Engineering ( ICSE ) . Piscataway: IEEE, 2019: 783-794.
 [11] MENG Y, LIU L. A deep learning approach for a source code detection model using self-attention [ J] . Complexity, 2020, 2020: 1-15. 
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[ C]∥Advances in Neural Information Processing Systems 30. Long Beach: NIPS, 2017:5998- 6008.
 [13] CORDONNIER J B, LOUKAS A, JAGGI M. On the relationship between self-attention and convolutional layers [EB / OL] . (2019-11-08) [2022-09-11] . https:∥arxiv. org / abs/ 1911. 03584.
 [14] GONG J J, QIU X P, CHEN X C, et al. Convolutional interaction network for natural language inference [ C] ∥ Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2018: 1576-1585.
 [15] YANG G, ZHOU Y L, CHEN X, et al. Fine-grained pseudo-code generation method via code feature extraction and transformer[C]∥2021 28th Asia-Pacific Software Engineering Conference ( APSEC ) . Piscataway: IEEE, 2022: 213-222. 
[16] 张安琳, 张启坤, 黄道颖, 等. 基于 CNN 与 BiGRU 融 合神经网络的入侵检测模型[ J] . 郑州大学学报( 工 学版) , 2022, 43(3) : 37-43. 
ZHANG A L, ZHANG Q K, HUANG D Y, et al. Intrusion detection model based on CNN and BiGRU fused neural network [ J ] . Journal of Zhengzhou University (Engineering Science) , 2022, 43(3) : 37-43. 
[17] YUAN Y H, HUANG L, GUO J Y, et al. OCNet: object context for semantic segmentation[ J] . International Journal of Computer Vision, 2021, 129(8) : 2375-2398.
 [18] GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[ C]∥Proceedings of the 34th International Conference on Machine Learning. New York: ACM, 2017: 1243-1252.
Similar References:
Memo

-

Last Update: 2023-10-22
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)