STATISTICS

Viewed1766

Downloads1426

Vehicle Detection Method Based on Improved YOLOv5s in Foggy Scene
[1]YUAN Laohu,CHANG Yukun,LIU Jiafu.Vehicle Detection Method Based on Improved YOLOv5s in Foggy Scene[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):37-43.[doi:10.13705/j.issn.1671-6833.2023.03.005]
Copy
References:
[1] 贺宇哲, 何宁, 张人, 等. 面向深度学习目标检测模型训练不平衡研究[J]. 计算机工程与应用, 2022, 58(5): 172-178.HE Y Z, HE N, ZHANG R, et al. Research on imba-lanced training of deep learning target detection model[J]. Computer Engineering and Applications, 2022, 58(5): 172-178.
[2] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
[4] 院老虎, 翟柯嘉, 张泽鹏, 等. 基于模拟雾天遥感数据集的飞机目标检测研究[J]. 南京邮电大学学报(自然科学版), 2021, 41(3): 77-84.YUAN L H, ZHAI K J, ZHANG Z P, et al. Aircraft target detection based on fog simulation remote sensing image dataset[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2021, 41(3): 77-84.
[5] 王启明,何梓林,张栋林,等.基于YOLOv3的雾天场景行人车辆检测方法研究 [J/OL]. 控制工程, 2022,4(2):1-8(2022-02-17)[2022-11-14].https:∥doi.org/10.14107/j.cnki.kzgc.20211118.WANG Q M, HE Z L, ZHANG D L, et al. Research on pedestrian and vehicle detection method in foggy scene based on YOLOv3 [J/OL]. Control Engineering, 2022,4(2):1-8(2022-02-17)[2022-11-14]. https:∥doi.org/10.14107/j.cnki.kzgc.20211118.
[6] 陈琼红, 冀杰, 种一帆, 等. 基于AOD-Net和SSD的雾天车辆和行人检测[J]. 重庆理工大学学报(自然科学), 2021, 35(5): 108-117.CHEN Q H, JI J, CHONG Y F, et al. Vehicle and pedestrian detection based on AOD-Net and SSD algorithm in hazy environment[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(5): 108-117.
[7] 李北明, 金荣璐, 徐召飞, 等. 基于特征蒸馏的改进Ghost-YOLOv5红外目标检测算法[J]. 郑州大学学报(工学版), 2022, 43(1): 20-26.LI B M, JIN R L, XU Z F, et al. An improved Ghost-YOLOv5 infrared target detection algorithm based on feature distillation[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(1): 20-26.
[8] ZHU P F, WEN L Y, DU D W, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380-7399.
[9] 梁增龑, 刘本永. 基于主分量分析和大气散射模型的彩色图像雾霾快速去除算法[J]. 计算机应用, 2015, 35(2): 531-534.LIANG Z Y, LIU B Y. Fast algorithm for color image haze removal using principle component analysis and atmospheric scattering mode[J]. Journal of Computer Applications, 2015, 35(2): 531-534.
[10] 高隽, 褚擎天, 张旭东, 等. 结合光场深度估计和大气散射模型的图像去雾方法[J]. 光子学报, 2020, 49(7): 0710001.GAO J, CHU Q T, ZHANG X D, et al. Image dehazing method based on light field depth estimation and atmospheric scattering model[J]. Acta Photonica Sinica, 2020, 49(7): 0710001.
[11] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.
[12] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2020: 1571-1580.
[13] LIN T Y, DOLLwidth=11,height=14,dpi=110R P, GIRSHICK R, et al. Feature py-ramid networks for object detection[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 936-944.
[14] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[15] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]∥Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
Similar References:
Memo

-

Last Update: 2023-05-08
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)