[1]徐敏,袁建洲,刘四新,等.基于改进粒子群优化算法的短期风电功率预测[J].郑州大学学报(工学版),2012,33(06):32-35.[doi:10.3969/j.issn.1671-6833.2012.06.008]
点击复制

基于改进粒子群优化算法的短期风电功率预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
33卷
期数:
2012年06期
页码:
32-35
栏目:
出版日期:
2012-11-10

文章信息/Info

作者:
徐敏袁建洲刘四新等.
南昌大学信息工程学院,江西南昌,330031, 江西省安福县供电公司,江西安福,343200, 河南省禹州市电力工业公司,河南禹州,461670
关键词:
支持向量机 风电功率预测 改进粒子群优化算法 精度
DOI:
10.3969/j.issn.1671-6833.2012.06.008
摘要:
针对传统支持向量机(SVM)模型在风电功率预测中存在的参数选取问题,提出一种新的预测模型,采用改进的粒子群(MPSO)优化算法寻求SVM的最优参数模型,经典粒子群算法是一种全局优化算法,在此基础上提出改进的粒子群算法.算例结果表明,经MPSO优化的SVM模型应用于短期风电功率预测是有效的,使其预测精度有所提高.

相似文献/References:

[1]张震张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报(工学版),2015,36(03):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
 ZHANG Zhen,ZHANG Ying-jie.Iris Recognition Method Based on Support Vector Machine and Hamming Distance[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
[2]张炎亮刘阳王金凤.基于改进SVM的煤矿水灾害救援组织系统可靠性预测[J].郑州大学学报(工学版),2015,36(03):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
 ZHANG Yan-liang,LIU Yang,WANG Jin-feng.Reliability Prediction of Coal Mine Water Disasters EmergencyRescue System Based on Improved SVM[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
[3]李蒙蒙,尚志刚,李志辉.结合投影与近邻操作的支持向量快速筛选方法[J].郑州大学学报(工学版),2017,38(03):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
 Li Mengmeng,Shang Zhigang,Li Zhihui.Fast Method to Filter Support Vectors Combined with Operation of Projection and Nearest Neighbors’ Selection[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
[4]耿亚南,邓计才.基于人工鱼群优化SVM的声磁标签信号检测研究[J].郑州大学学报(工学版),2017,38(04):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
 Deng Jicai,Geng Yanan.Improved AFSA Optimization of SVM in The Application of Magnetic EAS Acoustic Signal Detection[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
[5]曾庆山,宋庆祥,范明莉.基于光流共生矩阵的人群行为异常检测[J].郑州大学学报(工学版),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
 Zeng Qingshan,Song Qingxiang,Fan Mingli.Detection of Human Behavior Anomaly Based on the Optical Flow Co-occurrence Matrix[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
[6]雷文平,吴小龙,陈超宇,等.基于自动编码器和SVM的轴承故障诊断方法[J].郑州大学学报(工学版),2018,39(05):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
 Lei Wenping,Wu Xiaolong,Chen Chaoyu,et al.The Application of SVM Based on Auto-encoder in Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
[7]王杰,姜念,张毅..SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报(工学版),2011,32(01):75.[doi:10.3969/j.issn.1671-6833.2011.01.019]
[8]王杰,陈锴鹏..基于决策函数及PSO优化的SVM预测控制应用研究[J].郑州大学学报(工学版),2013,34(02):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]

更新日期/Last Update: 1900-01-01