[1]李蒙蒙,尚志刚,李志辉.结合投影与近邻操作的支持向量快速筛选方法[J].郑州大学学报(工学版),2017,38(03):49-53.[doi:10.13705/j.issn.1671-6833.2016.06.003]
 Li Mengmeng,Shang Zhigang,Li Zhihui.Fast Method to Filter Support Vectors Combined with Operation of Projection and Nearest Neighbors’ Selection[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):49-53.[doi:10.13705/j.issn.1671-6833.2016.06.003]
点击复制

结合投影与近邻操作的支持向量快速筛选方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
38卷
期数:
2017年03期
页码:
49-53
栏目:
出版日期:
2017-05-28

文章信息/Info

Title:
Fast Method to Filter Support Vectors Combined with Operation of Projection and Nearest Neighbors’ Selection
作者:
李蒙蒙尚志刚李志辉
郑州大学电气工程学院,河南郑州,450001
Author(s):
Li Mengmeng; Shang Zhigang; Li Zhihui
School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001
关键词:
支持向量机支持向量Fisher投影k-近邻快速筛选
Keywords:
DOI:
10.13705/j.issn.1671-6833.2016.06.003
文献标志码:
A
摘要:
为减少支持向量机(SVM)的计算负担,提高运算效率,并保证分类精度,提出一种结合投影与近邻操作的支持向量快速筛选方法.该方法利用Fisher投影轴的全局特性将其作为SVM最优分类面的近似法方向,在该方向快速筛除大量非支持向量,将分类边界附近的样本集作为备选支持向量集,同时为解决投影操作未考虑样本局部结构信息造成的误删支持向量的问题,结合近邻操作回选样本空间中备选支持向量的近邻样本更新扩充备选支持向量集,以该子集中的样本作为SVM的输入.在多个UCI标准数据集上的实验结果表明,该方法在充分保证分类精度的前提下有效降低了SVM的计算负担,具有较好的推广性.
Abstract:
To reduce computational burden and improve operation efficiency of support vector machine (SVM) while ensuring classification accuracy,a fast method to filter support vectors combined with operation of projection and nearest neighbors’ selection was proposed.Considering the global characteristics of Fisher projection,it could be viewed as the approximate normal directions of SVM optimal hyperplane and filtered out a large number of non-support-vectors in this direction.The samples near the classification obtained boundary were regarded as alternative support vectors set.Neighborhood operation was combined to solve the problem that some support vectors might be filtered out mistakenly regardless of the local structure information.A number of nearest neighbors of the alternative support vectors were selected backward from the samples space to update and expand the alternative support vectors set.The sets was treated as the SVM input.The experimental results on several UCI standard data sets showed that the fast method had good generalization performance and reduced the computational burden effectively under the premise of fully guaranteed classification accuracy.

相似文献/References:

[1]张震张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报(工学版),2015,36(03):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
 ZHANG Zhen,ZHANG Ying-jie.Iris Recognition Method Based on Support Vector Machine and Hamming Distance[J].Journal of Zhengzhou University (Engineering Science),2015,36(03):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
[2]张炎亮刘阳王金凤.基于改进SVM的煤矿水灾害救援组织系统可靠性预测[J].郑州大学学报(工学版),2015,36(03):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
 ZHANG Yan-liang,LIU Yang,WANG Jin-feng.Reliability Prediction of Coal Mine Water Disasters EmergencyRescue System Based on Improved SVM[J].Journal of Zhengzhou University (Engineering Science),2015,36(03):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
[3]耿亚南,邓计才.基于人工鱼群优化SVM的声磁标签信号检测研究[J].郑州大学学报(工学版),2017,38(04):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
 Deng Jicai,Geng Yanan.Improved AFSA Optimization of SVM in The Application of Magnetic EAS Acoustic Signal Detection[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
[4]曾庆山,宋庆祥,范明莉.基于光流共生矩阵的人群行为异常检测[J].郑州大学学报(工学版),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
 Zeng Qingshan,Song Qingxiang,Fan Mingli.Detection of Human Behavior Anomaly Based on the Optical Flow Co-occurrence Matrix[J].Journal of Zhengzhou University (Engineering Science),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
[5]雷文平,吴小龙,陈超宇,等.基于自动编码器和SVM的轴承故障诊断方法[J].郑州大学学报(工学版),2018,39(05):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
 Lei Wenping,Wu Xiaolong,Chen Chaoyu,et al.The Application of SVM Based on Auto-encoder in Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2018,39(03):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
[6]王杰,姜念,张毅..SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报(工学版),2011,32(01):75.[doi:10.3969/j.issn.1671-6833.2011.01.019]
[7]徐敏,袁建洲,刘四新,等.基于改进粒子群优化算法的短期风电功率预测[J].郑州大学学报(工学版),2012,33(06):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
[8]王杰,陈锴鹏..基于决策函数及PSO优化的SVM预测控制应用研究[J].郑州大学学报(工学版),2013,34(02):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]

更新日期/Last Update: