[1]张光晨,李展菲,何舒平,等.基于SMC策略的线性不可分数据集的分类算法[J].郑州大学学报(工学版),2026,47(XX):1-6.[doi:10.13705/j.issn.1671-6833.2026.04.004]
 ZHANG Guangchen,LI Zhanfei,HE Shuping,et al.Classification Algorithm for Linearly Inseparable Datasets Based on SMC Strategy[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-6.[doi:10.13705/j.issn.1671-6833.2026.04.004]
点击复制

基于SMC策略的线性不可分数据集的分类算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年XX
页码:
1-6
栏目:
出版日期:
2026-09-10

文章信息/Info

Title:
Classification Algorithm for Linearly Inseparable Datasets Based on SMC Strategy
作者:
张光晨1李展菲1何舒平2夏元清3
1. 北方民族大学 数学与信息科学学院, 宁夏 银川 750021;2. 安徽大学 电气工程与自动化学院, 安徽 合肥230601;3. 北京理工大学 自动化学院,北京 100081
Author(s):
ZHANG Guangchen1 LI Zhanfei1 HE Shuping2 XIA Yuanqing3
1. School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China; 2. School of Electrical Engineering and Automation,Anhui University, Hefei 230601, China; 3. School of Automation, Beijing University of Technology, Beijing 100081, China
关键词:
支持向量机滑模控制策略分类算法核函数参数
Keywords:
support vector machinessliding mode control strategyclassification algorithmnuclear functionparameter
分类号:
TP181;O224
DOI:
10.13705/j.issn.1671-6833.2026.04.004
文献标志码:
A
摘要:
针对线性不可分数据集的分类问题,通过将滑模控制(SMC)思想用于支持向量(SVM)核函数参数优化过程,提出一种基于SMC策略的SVM核函数参数优化算法。设计误差方程和滑模面,建立SVM分类目标函数与SMC的关联,并推导出核函数参数迭代更新规则及代价函数。通过动态调整SVM核函数参数,在减少支持向量数量的同时提升分类性能。实验部分采用Iris、Heart disease等6个UCI数据集验证算法有效性。结果显示,与传统SVM相比,所提算法在Iris数据集上支持向量减少56.25%,测试准确率保持100%;在Heart-disease数据集上测试准确率提升13.58百分点。所提算法与现有优化算法对比,在多个数据集上表现出更高的分类精度。
Abstract:
For the classification problem of linearly inseparable datasets, a support vector machine (SVM) kernel function parameter optimization algorithm was proposed based on the sliding mode control (SMC) strategy by applying the SMC idea to the SVM kernel function parameter optimization process. Designing the error equation and sliding surface, the association between SVM classification objective function and SMC was established, and the iterative update rules of kernel function parameters and cost function were derived. The algorithm improved classification performance while reducing the number of support vectors by dynamically adjusting the kernel parameters of SVM. In the experiment part, six UCI datasets, such as Iris and Heart disease, were used to verify the validity of the algorithm. The results showed that compared with traditional SVM, the proposed algorithm reduced the number of support vectors by 56.25% on the Iris dataset, and the test accuracy remained at 100%. Test accuracy increased by 13.58 percentage points on the Heart disease dataset. Furthermore, the proposed algorithm, compared with existing optimization algorithms, showed a higher classification accuracy on some datasets.

参考文献/References:

[1] BISHOP C M. Pattern recognition and machine learning [M]. New York: Springer, 2006.
[2] 周志华. 机器学习 [M]. 北京: 清华大学出版社, 2016.
ZHOU Z H. Machine learning [M]. Beijing: Tsinghua University Press, 2016.
[3] 李晓桐, 程璠, 田晶, 等. 结合 SMOTE 技术与优化算法的支持向量机在慢性心衰不良结局预测中的应用[J]. 中国卫生统计, 2024, 41(6): 802-806.
LI X T, CHENG F, TIAN J. Application of SMOTE technique and optimization algorithm support vector machine in predicting adverse outcome of chronic heart failure[J]. Chinese Journal of Health Statistics, 2024, 41(6): 802-806.
[4] 郑祥, 张鸿鹄, 魏岩岩. 基于改进 SVM 的变电站设备红外图像故障诊断方法研究[J]. 电测与仪表, 2024, 61(12): 49-55.
ZHENG X, ZHANG H H, WEI Y Y. Research on infrared image fault diagnosis method for substation equipment based on improved SVM[J]. Electrical Measurement & Instrumentation, 2024, 61(12): 49-55.
[5] 赵旭阳, 张延彬, 王忠勇, 等. 基于 SVM 的声磁标签检测系统设计及其 FPGA 实现[J]. 郑州大学学报(工学版), 2021, 42(3): 13-18.
ZHAO X Y, ZHANG Y B, WANG Z Y, et al. Design of acoustic magnetic label detection system based on SVM and FPGA implementation[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(3): 13-18.
[6] ADEYANJU I A, OMIDIORA E O, OYEDOKUN O F. Performance evaluation of different support vector machine kernels for face emotion recognition[C]//2015 SAI Intelligent Systems Conference (IntelliSys). Piscataway: IEEE, 2015: 804-806.
[7] ZHOU P J, ZENG W T, ZHANG W W, et al. Multicavitation states identification of a sewage pump using CEEMDAN and BOA-SVM[J]. Journal of Water Process Engineering, 2024, 61: 105299.
[8] ZHANG H, ZHANG Y F. An improved sparrow search algorithm for optimizing support vector machines[J]. IEEE Access, 2023, 11: 8199-8206.
[9] ABBASZADEH M, SOLTANI-MOHAMMADI S, AHMED A N. Optimization of support vector machine parameters in modeling of Iju deposit mineralization and alteration zones using particle swarm optimization algorithm and grid search method[J]. Computers & Geosciences, 2022, 165: 105140.
[10] LI C P, PENG T H, ZHU Y M. A cutting pattern recognition method for shearers based on CEEMDAN and improved grey wolf optimizer algorithm-optimized SVM[J]. Applied Sciences, 2021, 11(19): 9081.
[11] ZHANG G C, XIA Y Q, LI X F, et al. Multievent-triggered sliding-mode control for a class of complex dynamic network[J]. IEEE Transactions on Control of Network Systems, 2022, 9(2): 835-844.
[12] 刘凌, 司杰文, 林起联. 支持向量机预测可变参数的永磁同步电机快速终端滑模控制[J]. 西安交通大学学报, 2021, 55(6): 53-60.
LIU L, SI J W, LIN Q L. A fast terminal sliding mode control of permanent magnet synchronous motor with variable parameters predicted by SVM[J]. Journal of Xi’an Jiaotong University, 2021, 55(6): 53-60.
[13] YALSAVAR M, KARIMAGHAEE P, SHEIKH-AKBARI A, et al. Sliding mode control based support vector machine RBF kernel parameter optimization[C]//2019 IEEE International Conference on Imaging Systems and Techniques (IST). Piscataway: IEEE, 2019: 1-6.
[14] 宋慧玲, 张仲广, 夏冰. 基于支持向量机的分类问题研究[M]. 哈尔滨: 黑龙江大学出版社, 2022.
SONG H L, ZHANG Z G, XIA B. Research on classification problem based on support vector machine[M]. Harbin: Heilongjiang University Press, 2022.
[15] 蒋刚. 核函数理论与信号处理[M]. 北京: 科学出版社, 2013.
JIANG G. Kernel function theory and signal processing[M]. Beijing: Science Press, 2013.
[16] CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. New York: Cambridge University Press, 2000.
[17] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006.
[18] FISHER R A. Iris [DS/OL]. (1988-06-30)[2025-08-11]. https://doi.org/10.24432/C56C76.
[19] JANOSI A, STEINBRUNN W, PFISTERER M, et al. Heart disease [DS/OL]. (1988-06-30)[2025-08-11]. https://doi.org/10.24432/C52P4X.
[20] HABERMAN S. Haberman’s survival [DS/OL]. (1999-03-20)[2025-08-11]. https://doi.org/10.24432/C5XK51.
[21] SLATE D. Letter recognition [DS/OL]. (1990-12-31)[2025-08-11]. https://doi.org/10.24432/C5ZP40.
[22] SEJNOWSKI T, GORMAN R. Connectionist bench (sonar, mines vs. rocks) [DS/OL]. [2025-08-11]. https://doi.org/10.24432/C5T01Q.
[23] WNEK J. MONK’s problems [DS/OL]. (1992-09-30)[2025-08-11]. https://doi.org/10.24432/C5R30R.

相似文献/References:

[1]张震,张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报(工学版),2015,36(03):25.[doi:10.3969/j.issn.1671-6833.2015.03.006]
 ZHANG Zhen,ZHANG Ying-jie.Iris Recognition Method Based on Support Vector Machine and Hamming Distance[J].Journal of Zhengzhou University (Engineering Science),2015,36(XX):25.[doi:10.3969/j.issn.1671-6833.2015.03.006]
[2]张炎亮,刘阳,王金凤.基于改进SVM的煤矿水灾害救援组织系统可靠性预测[J].郑州大学学报(工学版),2015,36(03):115.[doi:10.3969/j.issn.1671-6833.2015.03.025]
 ZHANG Yan-liang,LIU Yang,WANG Jin-feng.Reliability Prediction of Coal Mine Water Disasters EmergencyRescue System Based on Improved SVM[J].Journal of Zhengzhou University (Engineering Science),2015,36(XX):115.[doi:10.3969/j.issn.1671-6833.2015.03.025]
[3]李蒙蒙,尚志刚,李志辉.结合投影与近邻操作的支持向量快速筛选方法[J].郑州大学学报(工学版),2017,38(03):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
 Li Mengmeng,Shang Zhigang,Li Zhihui.Fast Method to Filter Support Vectors Combined with Operation of Projection and Nearest Neighbors’ Selection[J].Journal of Zhengzhou University (Engineering Science),2017,38(XX):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
[4]耿亚南,邓计才.基于人工鱼群优化SVM的声磁标签信号检测研究[J].郑州大学学报(工学版),2017,38(04):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
 Deng Jicai,Geng Yanan.Improved AFSA Optimization of SVM in The Application of Magnetic EAS Acoustic Signal Detection[J].Journal of Zhengzhou University (Engineering Science),2017,38(XX):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
[5]曾庆山,宋庆祥,范明莉.基于光流共生矩阵的人群行为异常检测[J].郑州大学学报(工学版),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
 Zeng Qingshan,Song Qingxiang,Fan Mingli.Detection of Human Behavior Anomaly Based on the Optical Flow Co-occurrence Matrix[J].Journal of Zhengzhou University (Engineering Science),2018,39(XX):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
[6]雷文平,吴小龙,陈超宇,等.基于自动编码器和SVM的轴承故障诊断方法[J].郑州大学学报(工学版),2018,39(05):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
 Lei Wenping,Wu Xiaolong,Chen Chaoyu,et al.The Application of SVM Based on Auto-encoder in Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2018,39(XX):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
[7]王杰,姜念,张毅..SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报(工学版),2011,32(01):75.[doi:10.3969/j.issn.1671-6833.2011.01.019]
[8]徐敏,袁建洲,刘四新,等.基于改进粒子群优化算法的短期风电功率预测[J].郑州大学学报(工学版),2012,33(06):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
 XU Min,YUAN Jianzhou,LIU Sixin.Short-term Wind Power Prediction Based on ModifiedParticle Swarm Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2012,33(XX):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
[9]王杰,陈锴鹏..基于决策函数及PSO优化的SVM预测控制应用研究[J].郑州大学学报(工学版),2013,34(02):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]
 WANG Jie,CHEN Kai-peng.Application Study of SVM Predictive Control Based on DecisionFunctions Simplification and Pso Optimization[J].Journal of Zhengzhou University (Engineering Science),2013,34(XX):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]

备注/Memo

备注/Memo:
收稿日期:2025-09-01;修订日期:2025-10-20
基金项目:国家自然科学基金项目(62563002);宁夏自然科学基金优秀青年项目(2022AAC05039);北方民族大学创新项目(YCX24288)。
作者简介:张光晨(1985— ) ,男,山西晋中人,北方民族大学副教授,博士,主要从事复杂网络智能控制、数据分析与决策、大模型理论及应用研究,E-mail:guangchen_123@163.com。
更新日期/Last Update: 2026-01-13