参考文献/References:
[1] BISHOP C M. Pattern recognition and machine learning [M]. New York: Springer, 2006.
[2] 周志华. 机器学习 [M]. 北京: 清华大学出版社, 2016.
ZHOU Z H. Machine learning [M]. Beijing: Tsinghua University Press, 2016.
[3] 李晓桐, 程璠, 田晶, 等. 结合 SMOTE 技术与优化算法的支持向量机在慢性心衰不良结局预测中的应用[J]. 中国卫生统计, 2024, 41(6): 802-806.
LI X T, CHENG F, TIAN J. Application of SMOTE technique and optimization algorithm support vector machine in predicting adverse outcome of chronic heart failure[J]. Chinese Journal of Health Statistics, 2024, 41(6): 802-806.
[4] 郑祥, 张鸿鹄, 魏岩岩. 基于改进 SVM 的变电站设备红外图像故障诊断方法研究[J]. 电测与仪表, 2024, 61(12): 49-55.
ZHENG X, ZHANG H H, WEI Y Y. Research on infrared image fault diagnosis method for substation equipment based on improved SVM[J]. Electrical Measurement & Instrumentation, 2024, 61(12): 49-55.
[5] 赵旭阳, 张延彬, 王忠勇, 等. 基于 SVM 的声磁标签检测系统设计及其 FPGA 实现[J]. 郑州大学学报(工学版), 2021, 42(3): 13-18.
ZHAO X Y, ZHANG Y B, WANG Z Y, et al. Design of acoustic magnetic label detection system based on SVM and FPGA implementation[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(3): 13-18.
[6] ADEYANJU I A, OMIDIORA E O, OYEDOKUN O F. Performance evaluation of different support vector machine kernels for face emotion recognition[C]//2015 SAI Intelligent Systems Conference (IntelliSys). Piscataway: IEEE, 2015: 804-806.
[7] ZHOU P J, ZENG W T, ZHANG W W, et al. Multicavitation states identification of a sewage pump using CEEMDAN and BOA-SVM[J]. Journal of Water Process Engineering, 2024, 61: 105299.
[8] ZHANG H, ZHANG Y F. An improved sparrow search algorithm for optimizing support vector machines[J]. IEEE Access, 2023, 11: 8199-8206.
[9] ABBASZADEH M, SOLTANI-MOHAMMADI S, AHMED A N. Optimization of support vector machine parameters in modeling of Iju deposit mineralization and alteration zones using particle swarm optimization algorithm and grid search method[J]. Computers & Geosciences, 2022, 165: 105140.
[10] LI C P, PENG T H, ZHU Y M. A cutting pattern recognition method for shearers based on CEEMDAN and improved grey wolf optimizer algorithm-optimized SVM[J]. Applied Sciences, 2021, 11(19): 9081.
[11] ZHANG G C, XIA Y Q, LI X F, et al. Multievent-triggered sliding-mode control for a class of complex dynamic network[J]. IEEE Transactions on Control of Network Systems, 2022, 9(2): 835-844.
[12] 刘凌, 司杰文, 林起联. 支持向量机预测可变参数的永磁同步电机快速终端滑模控制[J]. 西安交通大学学报, 2021, 55(6): 53-60.
LIU L, SI J W, LIN Q L. A fast terminal sliding mode control of permanent magnet synchronous motor with variable parameters predicted by SVM[J]. Journal of Xi’an Jiaotong University, 2021, 55(6): 53-60.
[13] YALSAVAR M, KARIMAGHAEE P, SHEIKH-AKBARI A, et al. Sliding mode control based support vector machine RBF kernel parameter optimization[C]//2019 IEEE International Conference on Imaging Systems and Techniques (IST). Piscataway: IEEE, 2019: 1-6.
[14] 宋慧玲, 张仲广, 夏冰. 基于支持向量机的分类问题研究[M]. 哈尔滨: 黑龙江大学出版社, 2022.
SONG H L, ZHANG Z G, XIA B. Research on classification problem based on support vector machine[M]. Harbin: Heilongjiang University Press, 2022.
[15] 蒋刚. 核函数理论与信号处理[M]. 北京: 科学出版社, 2013.
JIANG G. Kernel function theory and signal processing[M]. Beijing: Science Press, 2013.
[16] CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. New York: Cambridge University Press, 2000.
[17] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006.
[18] FISHER R A. Iris [DS/OL]. (1988-06-30)[2025-08-11]. https://doi.org/10.24432/C56C76.
[19] JANOSI A, STEINBRUNN W, PFISTERER M, et al. Heart disease [DS/OL]. (1988-06-30)[2025-08-11]. https://doi.org/10.24432/C52P4X.
[20] HABERMAN S. Haberman’s survival [DS/OL]. (1999-03-20)[2025-08-11]. https://doi.org/10.24432/C5XK51.
[21] SLATE D. Letter recognition [DS/OL]. (1990-12-31)[2025-08-11]. https://doi.org/10.24432/C5ZP40.
[22] SEJNOWSKI T, GORMAN R. Connectionist bench (sonar, mines vs. rocks) [DS/OL]. [2025-08-11]. https://doi.org/10.24432/C5T01Q.
[23] WNEK J. MONK’s problems [DS/OL]. (1992-09-30)[2025-08-11]. https://doi.org/10.24432/C5R30R.
相似文献/References:
[1]张震,张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报(工学版),2015,36(03):25.[doi:10.3969/j.issn.1671-6833.2015.03.006]
ZHANG Zhen,ZHANG Ying-jie.Iris Recognition Method Based on Support Vector Machine and Hamming Distance[J].Journal of Zhengzhou University (Engineering Science),2015,36(XX):25.[doi:10.3969/j.issn.1671-6833.2015.03.006]
[2]张炎亮,刘阳,王金凤.基于改进SVM的煤矿水灾害救援组织系统可靠性预测[J].郑州大学学报(工学版),2015,36(03):115.[doi:10.3969/j.issn.1671-6833.2015.03.025]
ZHANG Yan-liang,LIU Yang,WANG Jin-feng.Reliability Prediction of Coal Mine Water Disasters EmergencyRescue System Based on Improved SVM[J].Journal of Zhengzhou University (Engineering Science),2015,36(XX):115.[doi:10.3969/j.issn.1671-6833.2015.03.025]
[3]李蒙蒙,尚志刚,李志辉.结合投影与近邻操作的支持向量快速筛选方法[J].郑州大学学报(工学版),2017,38(03):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
Li Mengmeng,Shang Zhigang,Li Zhihui.Fast Method to Filter Support Vectors Combined with Operation of Projection and Nearest Neighbors’ Selection[J].Journal of Zhengzhou University (Engineering Science),2017,38(XX):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
[4]耿亚南,邓计才.基于人工鱼群优化SVM的声磁标签信号检测研究[J].郑州大学学报(工学版),2017,38(04):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
Deng Jicai,Geng Yanan.Improved AFSA Optimization of SVM in The Application of Magnetic EAS Acoustic Signal Detection[J].Journal of Zhengzhou University (Engineering Science),2017,38(XX):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
[5]曾庆山,宋庆祥,范明莉.基于光流共生矩阵的人群行为异常检测[J].郑州大学学报(工学版),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
Zeng Qingshan,Song Qingxiang,Fan Mingli.Detection of Human Behavior Anomaly Based on the Optical Flow Co-occurrence Matrix[J].Journal of Zhengzhou University (Engineering Science),2018,39(XX):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
[6]雷文平,吴小龙,陈超宇,等.基于自动编码器和SVM的轴承故障诊断方法[J].郑州大学学报(工学版),2018,39(05):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
Lei Wenping,Wu Xiaolong,Chen Chaoyu,et al.The Application of SVM Based on Auto-encoder in Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2018,39(XX):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
[7]王杰,姜念,张毅..SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报(工学版),2011,32(01):75.[doi:10.3969/j.issn.1671-6833.2011.01.019]
[8]徐敏,袁建洲,刘四新,等.基于改进粒子群优化算法的短期风电功率预测[J].郑州大学学报(工学版),2012,33(06):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
XU Min,YUAN Jianzhou,LIU Sixin.Short-term Wind Power Prediction Based on ModifiedParticle Swarm Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2012,33(XX):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
[9]王杰,陈锴鹏..基于决策函数及PSO优化的SVM预测控制应用研究[J].郑州大学学报(工学版),2013,34(02):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]
WANG Jie,CHEN Kai-peng.Application Study of SVM Predictive Control Based on DecisionFunctions Simplification and Pso Optimization[J].Journal of Zhengzhou University (Engineering Science),2013,34(XX):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]