[1]郭成超,党 鹏,马合木提·依明,等.深厚含土重冰层路基高聚物隔热性能试验[J].郑州大学学报(工学版),2025,46(04):100-106.[doi:10.13705/j.issn.1671-6833.2025.04.004]
 GUO Chengchao,DANG Peng,YIMING Mahemuti,et al.Experimental on Thermal Insulation Capacity of Polymers in Roadbed of Deep Soil-bearing Heavy Ice Layer[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):100-106.[doi:10.13705/j.issn.1671-6833.2025.04.004]
点击复制

深厚含土重冰层路基高聚物隔热性能试验()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年04期
页码:
100-106
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
Experimental on Thermal Insulation Capacity of Polymers in Roadbed of Deep Soil-bearing Heavy Ice Layer
文章编号:
1671-6833(2025)04-0100-07
作者:
郭成超1 党 鹏2 马合木提·依明2 刘建刚2 吴 栋2 王 贺3 曹鼎峰1
1. 中山大学 土木工程学院,广东 珠海 519082;2. 新疆交通建设集团股份有限公司,新疆 乌鲁木齐 830016;3. 西南交通大学 土木工程学院,四川 成都 610031
Author(s):
GUO Chengchao1 DANG Peng2 YIMING Mahemuti2 LIU Jiangang2 WU Dong2 WANG He3 CAO Dingfeng1
1. School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, China; 2. Xinjiang Communications Construction Group Co. , Ltd. , Urumqi 830016, China; 3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
关键词:
道路工程 深厚含土重冰层 聚氨酯高聚物 保温隔热结构 模型试验
Keywords:
roads & highways deep soil-bearing heavy ice layer polyurethane polymer thermal insulation structure model test
分类号:
TU445
DOI:
10.13705/j.issn.1671-6833.2025.04.004
文献标志码:
A
摘要:
深厚含土重冰层是极限性不良地质,在其上修建路基会面临严重的冻胀和融沉病害,威胁车辆的运行安全。为此探究了将聚氨酯高聚物材料(PU)用作路基的保温隔热层以防止冻融病害。 进行了 PU 的隔热性能试验,分析密度和冻融循环次数对 PU 导热系数的影响。 开展了重冰层冻土路基保温隔热模型试验。 研究了普通路基、单层 PU板路基和双层 PU 板路基在冻融过程中的温度分布特征,定量描述了 PU 的隔热效果。 结果表明:PU 的导热系数与自身密度呈正相关,与冻融循环次数也呈正相关;PU 的密度越低,其导热系数受到冻融循环的影响越大;PU 的密度越高,其隔热性能越能在多次冻融循环中保持稳定;冻结时,普通路基的热通量是单层和双层 PU 板路基的 1. 7 倍,融化时,普通路基的热通量是单层 PU 板路基的 2. 1 倍,双层 PU 板路基的 2. 8 倍;PU 板具有保温隔热能力,可以抬升路基的冻结深度,减少冻胀病害,延长路基的冻结过程,避免融沉病害;双层 PU 板比单层 PU 板表现出更优秀的隔热效果。
Abstract:
The deep soil-bearing heavy ice layer is the extreme adverse geology, on which the construction of roadbed will be exposed to serious frost heave, and thawing and settlement disease, threatening the safe operation of vehicles. Polyurethane polymer ( PU) material was investigated as a thermal insulation layer for roadbeds to prevent freeze-thaw damage. The thermal insulation capability test of PU was conducted to analyze the effect of density and number of freeze-thaw cycles on the thermal conductivity of PU. The model test of thermal insulation of heavy ice layer frozen soil roadbed was carried out. The temperature distribution characteristics of ordinary roadbed, single-layer PU board roadbed and double-layer PU board roadbed during freeze-thaw process were investigated and the thermal insulation effect of PU board was described quantitatively. The results showed that the thermal conductivity of PU was positively correlated with its own density and the number of freeze-thaw cycles. The lower the density of PU, the more its thermal conductivity was affected by freeze-thaw cycles. The higher the density of PU, the more its thermal insulation performance could remain stable in multiple freeze-thaw cycles. The heat flux of ordinary roadbed was 1. 7 times of single-layer PU board roadbed and double-layer PU board roadbed in the freezing process, and 2. 1 times of single-layer PU board roadbed and 2. 8 times of double-layer PU board roadbed in the thawing process. PU board had thermal insulation ability, which could lift the freezing depth of the roadbed and reduce frost heave disease. The existence of PU could also prolong the freezing process of the roadbed and avoid thawing and settlement disease. Double-layer PU board showed better thermal insulation effect than single-layer PU board.

参考文献/References:

[1] 谭玲, 黄勇, 张益, 等. 新疆典型高山冻土类型快速评 判技术研究[J]. 公路交通技术, 2018, 34(6): 22-29. 

TAN L, HUANG Y, ZHANG Y, et al. Research on the fast classification technology of typical mountain frozen soil in Xinjiang [ J] . Technology of Highway and Transport, 2018, 34(6) : 22-29. 
[2] HJORT J, STRELETSKIY D, DORÉ G, et al. Impacts of permafrost degradation on infrastructure [ J ] . Nature Reviews Earth & Environment, 2022, 3: 24-38. 
[3] 杨平, 王岩梓, 刁鹏程. 上覆荷载对重塑粉质黏土补 水冻胀特性影响[ J] . 郑州大学学报(工学版) , 2022, 43(6) : 83-89. 
YANG P, WANG Y Z, DIAO P C. Influence of load on frost heaving characteristics of remolded silty clay [ J ] . Journal of Zhengzhou University ( Engineering Science) , 2022, 43(6) : 83-89. 
[4] WANG Q Z, FANG J H, ZHAO X Q, et al. The influence of pavement type on the thermal stability of blockstone embankments in the warm permafrost region [ J ] . Transportation Geotechnics, 2020, 23: 100334. 
[5] CHEN L, LAI Y M, FORTIER D, et al. Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions [ J] . Renewable Energy, 2022, 199: 1033-1046. 
[6] 赵翃婷, 吴青柏, 侯彦东, 等. 青藏铁路块碎石护坡 路基降 温 效 果 分 析 [ J] . 铁 道 学 报, 2022, 44 ( 5) : 132-140. 
ZHAO H T, WU Q B, HOU Y D, et al. Analysis on cooling effect of embankment with crushed rock and gravel revetment along Qinghai-Tibet Railway[ J] . Journal of the China Railway Society, 2022, 44(5) : 132-140. 
[7] 栗晓林,马巍,穆彦虎,等. 高海拔多年冻土区高速公 路分离式通风管路基的降温效果研究[ J] . 岩石力学 与工程学报,2022,41(增刊 2) :3488-3498. 
LI X L, MA W, MU Y H, et al. Study on the cooling effect of separated duct-ventilated embankments used for the Qinghai-Tibet expressway in high-altitude permafrost zones[ J] . Chinese Journal of Rock Mechanics and Engineering, 2022, 41( S2) :3488-3498. 
[8] 宋正民,穆彦虎,马巍,等. 高海拔冻土区通风管路基 管内风 速 及 影 响 因 素 研 究 [ J ] . 冰 川 冻 土, 2021, 43 (4) :1111-1120. 
SONG Z M, MU Y H, MA W, et al. Characteristics and influence factors of wind speed in ventilation duct of ventilation duct embankment in high altitude permafrost regions[ J] . Journal of Glaciology and Geocryology, 2021,43(4) :1111-1120. 
[9] KUZNETSOV G V, PONOMAREV K O, FEOKTISTOV D V, et al. Heat transfer in a two-phase closed thermosyphon working in Polar Regions[ J] . Thermal Science and Engineering Progress, 2021, 22: 100846. 
[10] 刘金修, 李泽, 李钰, 等. 多年冻土区热棒路基降温 调控效能研究[ J] . 公路, 2021, 66(2) : 20-27. 
LIU J X, LI Z, LI Y, et al. Research on thermosyphon subgrade cooling regulation efficiency in permafrost regions[ J] . Highway, 2021, 66(2) : 20-27. 
[11] 蔡汉成, 孟进宝, 赵相卿, 等. 基于热量收支平衡原 理的多年冻土区热棒路基设计计算方法[ J] . 岩土力 学, 2020, 41(11) : 3769-3776. 
CAI H C, MENG J B, ZHAO X Q, et al. Design method of the thermosyphon embankment in permafrost region based on principle of heat balance [ J] . Rock and Soil Mechanics, 2020, 41(11) : 3769-3776. 
[12] BAI R Q, ZHANG M Y, WANG J W, et al. Study on the solar albedo characteristics of pavement and embankment slope surfaces in permafrost regions[ J] . Solar Energy, 2022, 237: 352-364. 
[13] QIN Y H, LI Y P, BAO T. An experimental study of reflective shading devices for cooling roadbeds in permafrost regions[ J] . Solar Energy, 2020, 205: 135-141. 
[14] 王功博, 钱国玉, 王永. XPS 保温板在高速铁路路基 结构防冻胀措施中的应用 [ J] . 铁道勘察, 2019, 45 (3) : 56-60. 
WANG G B, QIAN G Y, WANG Y. The application of XPS insulation board in anti-frost heave measures for high-speed railway subgrade structure[ J] . Railway Investigation and Surveying, 2019, 45(3) : 56-60. 
[15] CONG L, YANG F, GUO G H, et al. The use of polyurethane for asphalt pavement engineering applications: a state-of-the-art review[ J] . Construction and Building Materials, 2019, 225: 1012-1025. 
[16] WANG Z G, WANG C Z, GAO Y B, et al. Porous thermal insulation polyurethane foam materials [ J ] . Polymers, 2023, 15(18) : 3818. 
[17] 郭成超, 王超杰, 崔璨. 非水反应高聚物注浆技术在 道路养护中的应用[ J] . 交通建设与管理, 2019( 3) : 112-114. 
GUO C C, WANG C J, CUI C. Application of non-water reactive polymer grouting technology in road maintenance [ J] . Transport Construction & Management, 2019( 3) : 112-114. 
[18] HWANG B K, KIM S K, KIM J H, et al. Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures [ J ] . International Journal of Mechanical Sciences, 2020, 180: 105657. 
[19] 方宏远,董智峰,薛冰寒, 等. 高聚物注浆修复的面板 堤坝探地雷达波场特征分析[ J] . 郑州大学学报( 工学 版) , 2024, 45(3) :1-6, 13. 
FANG H Y, DONG Z F, XUE B H, et al. Analysis of ground penetrating radar wave field characteristics of dam face disengaging repaired by polymer grouting [ J ] . Zhengzhou University ( Engineering Science) , 2024, 45 (3) :1-6, 13. 
[20] BIAN X C, DUAN X, LI W, et al. Track settlement restoration of ballastless high-speed railway using polyurethane grouting: full-scale model testing [ J] . Transportation Geotechnics, 2021, 26: 100381. 
[21] FAROOQ M A, NIMBALKAR S. Static and cyclic performance of polyurethane foam adhesive bound soil-rubber mixtures under drained conditions [ J] . Acta Geotechnica, 2024, 19(2) : 561-589. 
[22] 中华人民共和国国家质量监督检验检疫总局, 中国国 家标准化管理委员会. 建筑用绝热制品 抗冻融性能 的测定: GB / T 33011—2016 [ S] . 北京: 中国标准出 版社, 2016:12. 
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Thermal insulating products for building applications—determination of freeze-thaw resistance: GB / T 33011—2016 [ S ] . Beijing: Standards Press of China, 2016: 12. 
[23] 秦修云. 聚氨酯高聚物注浆材料的制备及性能研究 [ J] . 功能材料, 2023, 54(11) : 11134-11138. 
QIN X Y. Preparation and properties of polyurethane polymergrouting materials[ J] . Journal of Functional Materials, 2023, 54(11) : 11134-11138. 
[24] 刘志强, 马巍, 周国庆, 等. 纵向布管调控冻土路基 温度场的模拟试验研究[ J] . 岩石力学与工程学报, 2005, 24(11) : 1827-1831. 
LIU Z Q, MA W, ZHOU G Q, et al. Simulated experiment study on the temperature field of frozen subgrade modulated by horizontal pipes [ J ] . Chinese Journal of Rock Mechanics and Engineering, 2005, 24 ( 11 ) : 1827-1831. 
[25] 罗晓晓, 俞祁浩, 马勤国, 等. 基于附面层理论的路 基热 边 界 模 型 [ J] . 中 南 大 学 学 报 ( 自 然 科 学 版) , 2019, 50(3) : 658-668. 
LUO X X, YU Q H, MA Q G, et al. A prediction model on thermal boundary condition of embankment based on boundary layer theory[ J] . Journal of Central South University ( Science and Technology ) , 2019, 50 ( 3 ) : 658-668.

相似文献/References:

[1]袁玉卿,刘凤利,王选仓.旧水泥路面沥青加辅层间防裂抗拉强度指标研究[J].郑州大学学报(工学版),2015,36(02):28.[doi:10.3969/j.issn.1671-6833.2015.02.007]
 YUAN Yu-qing,LIU Feng-li,WANG Xuan-cang.Research on Tensile Strength Index of Anti-cracking Interlayerbetween Old Cement Pavement and Asphalt Overlay[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):28.[doi:10.3969/j.issn.1671-6833.2015.02.007]
[2]马峰,富志鹏,傅珍,等.基于光电比色法的天然沥青改性沥青与集料粘附性研究[J].郑州大学学报(工学版),2015,36(03):77.[doi:10.3969/j.issn.1671-6833.2015.03.017]
 MA Feng,FU Zhi-peng,FU Zhen,et al.Adhesion Between Asphalt Modified with Natural Asphalt and AggregateBased on Photoelectric Colorimetric Method[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):77.[doi:10.3969/j.issn.1671-6833.2015.03.017]
[3]李晶晶,张擎.水泥混凝土路面纵缝拉杆传荷试验研究[J].郑州大学学报(工学版),2015,36(06):119.[doi:10.3969/j.issn.1671-6833.2015.06.024]
 CHEN Lirong,CHEN Baochun.Analysis of Out-of-plane Stability of Standard Concrete-filledSteel Tube Dumbbell-shaped Rib Arch[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):119.[doi:10.3969/j.issn.1671-6833.2015.06.024]
[4]孙培,张洪亮,谢定文.下穿立交排水系统设计及储水管道分析[J].郑州大学学报(工学版),2015,36(06):104.[doi:10.3969/j.issn.1671-6833.2015.06.021]
 ZHANG Hongliang,SUN Pei,XIE Dingwen.Model Building and Mechanics Analysis on Storage Pipe of Underpass[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):104.[doi:10.3969/j.issn.1671-6833.2015.06.021]
[5]季节,王迪,石越峰,等.煤直接液化残渣改性沥青及其混合料性能评价[J].郑州大学学报(工学版),2016,37(04):67.[doi:10.13705/j.issn.1671-6833.2016.04.015]
 Ji Jie,Wang Di,Shi Yuefeng,et al.Study on the Performances of the DCLR Modified Asphalt Mixtures[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):67.[doi:10.13705/j.issn.1671-6833.2016.04.015]
[6]傅珍,申万青,孔志峰,等.增塑剂改性沥青路用性能试验研究[J].郑州大学学报(工学版),2017,38(03):15.[doi:10.13705/j.issn.1671-6833.2017.03.001]
 Fu Zhen,Shen Wanqing,Kong Zhifeng,et al.Pavement performance of asphalt binder modified with plasticizer[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):15.[doi:10.13705/j.issn.1671-6833.2017.03.001]
[7]王建宁,窦远明,孙吉书,等.钢纤维混凝土路面接缝传荷性能衰减规律的试验研究[J].郑州大学学报(工学版),2017,38(05):50.[doi:10.13705/j.issn.1671-6833.2017.05.004]
 Wang Jianning,Dou Yuanming,Sun Jishu,et al.Test study of joint load transfer efficiency in steel fiber concrete pavement[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):50.[doi:10.13705/j.issn.1671-6833.2017.05.004]
[8]盛燕萍,孙仕伟,赵澍林,等.路面免碾压贫混凝土基层工作性研究[J].郑州大学学报(工学版),2017,38(06):79.[doi:10.13705/j.issn.1671-6833.2016.06.014]
 Sheng Yanping,Sun Shiwei,Zhao Shulin,et al.Research on Workability of Compaction-free Lean Concrete Base[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):79.[doi:10.13705/j.issn.1671-6833.2016.06.014]
[9]纪小平,郑南翔,李欣..层间接触条件对沥青路面高温性能的影响研究[J].郑州大学学报(工学版),2010,31(02):34.
 JI Xiaoping,ZHENG Nanxiang,LI Xin.Influence of Different Interlayer Touch Types on High——TemperaturePerformance of Asphalt Pavement[J].Journal of Zhengzhou University (Engineering Science),2010,31(04):34.
[10]闫卫红,孟枫林,董忠红..移动荷载下半刚性基层沥青路面剪应变研究[J].郑州大学学报(工学版),2010,31(02):51.
 YAN Weihong,MENG Fenglin,DONG Zhonghong.Study on the Shearing Strain of the Semi——Rigid Base Asphalt Pavement under Moving Load[J].Journal of Zhengzhou University (Engineering Science),2010,31(04):51.

更新日期/Last Update: 2025-07-13