[1]王杰,陈锴鹏..基于决策函数及PSO优化的SVM预测控制应用研究[J].郑州大学学报(工学版),2013,34(02):53-56.[doi:10.3969/j.issn.1671-6833.2013.02.014]
 WANG Jie,CHEN Kai-peng.Application Study of SVM Predictive Control Based on DecisionFunctions Simplification and Pso Optimization[J].Journal of Zhengzhou University (Engineering Science),2013,34(02):53-56.[doi:10.3969/j.issn.1671-6833.2013.02.014]
点击复制

基于决策函数及PSO优化的SVM预测控制应用研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
34
期数:
2013年02期
页码:
53-56
栏目:
出版日期:
2013-03-28

文章信息/Info

Title:
Application Study of SVM Predictive Control Based on DecisionFunctions Simplification and Pso Optimization
作者:
王杰陈锴鹏.
郑州大学电气工程学院,河南郑州,450001, 郑州大学电气工程学院,河南郑州,450001
Author(s):
WANG JieCHEN Kai-peng
School of Electrical Engineering,Zhengzhou University,Zhengzhou 450001,China
关键词:
支持向量机 决策函数 粒子群算法 预测控制
Keywords:
SVM decision functionPSO predictive control
分类号:
TP181
DOI:
10.3969/j.issn.1671-6833.2013.02.014
文献标志码:
A
摘要:
SVM处理大样本问题时性能明显不如神经网络,因此笔者利用矩阵变换进行决策函数的简化来提升SVM的训练速度,对SVM建模时非必需的支持向量进行约简,并引入一个松弛变量来提升约简效果.实验证明,约简后支持向量个数减少三分之一以上.SVM所建立的模型进行线性化之后应用于预测控制当中,采用PSO算法来选择最优的SVM参数和计算预测控制的最优控制律.通过对水泥回转窑窑尾烟室温度的数据进行实验仿真,结果表明该方法可以提高系统响应速度,减小系统响应的超调量.
Abstract:
For large-scale samples,SVM does not perform as well as neural networks and this paper tries toimprove the training speed by simplify the decision functions by matrix transform. We simplify the unnecessarysupport vectors in SVM modeling and introduce a relaxation factor in order to improve the effects of simplifica-tion.Experiment shows that the number of support vectors is redused by at least one third. Using the modelnonlinear model built by SVM after linearizing as the predictive model of predictive control. PSO was used toselect the best SVM parameters and computing the optimal control law of predictive control. The method canaccelerate the response and shorten the overshoot through a simulation of a cement rotary kiln.

相似文献/References:

[1]张震张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报(工学版),2015,36(03):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
 ZHANG Zhen,ZHANG Ying-jie.Iris Recognition Method Based on Support Vector Machine and Hamming Distance[J].Journal of Zhengzhou University (Engineering Science),2015,36(02):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
[2]张炎亮刘阳王金凤.基于改进SVM的煤矿水灾害救援组织系统可靠性预测[J].郑州大学学报(工学版),2015,36(03):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
 ZHANG Yan-liang,LIU Yang,WANG Jin-feng.Reliability Prediction of Coal Mine Water Disasters EmergencyRescue System Based on Improved SVM[J].Journal of Zhengzhou University (Engineering Science),2015,36(02):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
[3]李蒙蒙,尚志刚,李志辉.结合投影与近邻操作的支持向量快速筛选方法[J].郑州大学学报(工学版),2017,38(03):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
 Li Mengmeng,Shang Zhigang,Li Zhihui.Fast Method to Filter Support Vectors Combined with Operation of Projection and Nearest Neighbors’ Selection[J].Journal of Zhengzhou University (Engineering Science),2017,38(02):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
[4]耿亚南,邓计才.基于人工鱼群优化SVM的声磁标签信号检测研究[J].郑州大学学报(工学版),2017,38(04):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
 Deng Jicai,Geng Yanan.Improved AFSA Optimization of SVM in The Application of Magnetic EAS Acoustic Signal Detection[J].Journal of Zhengzhou University (Engineering Science),2017,38(02):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
[5]曾庆山,宋庆祥,范明莉.基于光流共生矩阵的人群行为异常检测[J].郑州大学学报(工学版),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
 Zeng Qingshan,Song Qingxiang,Fan Mingli.Detection of Human Behavior Anomaly Based on the Optical Flow Co-occurrence Matrix[J].Journal of Zhengzhou University (Engineering Science),2018,39(02):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
[6]雷文平,吴小龙,陈超宇,等.基于自动编码器和SVM的轴承故障诊断方法[J].郑州大学学报(工学版),2018,39(05):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
 Lei Wenping,Wu Xiaolong,Chen Chaoyu,et al.The Application of SVM Based on Auto-encoder in Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2018,39(02):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
[7]王杰,姜念,张毅..SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报(工学版),2011,32(01):75.[doi:10.3969/j.issn.1671-6833.2011.01.019]
[8]徐敏,袁建洲,刘四新,等.基于改进粒子群优化算法的短期风电功率预测[J].郑州大学学报(工学版),2012,33(06):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]
 XU Min,YUAN Jianzhou,LIU Sixin.Short-term Wind Power Prediction Based on ModifiedParticle Swarm Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2012,33(02):32.[doi:10.3969/j.issn.1671-6833.2012.06.008]

更新日期/Last Update: 1900-01-01