[1]徐敏,袁建洲,刘四新,等.基于改进粒子群优化算法的短期风电功率预测[J].郑州大学学报(工学版),2012,33(06):32-35.[doi:10.3969/j.issn.1671-6833.2012.06.008]
 XU Min,YUAN Jianzhou,LIU Sixin.Short-term Wind Power Prediction Based on ModifiedParticle Swarm Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2012,33(06):32-35.[doi:10.3969/j.issn.1671-6833.2012.06.008]
点击复制

基于改进粒子群优化算法的短期风电功率预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
33
期数:
2012年06期
页码:
32-35
栏目:
出版日期:
2012-11-10

文章信息/Info

Title:
Short-term Wind Power Prediction Based on ModifiedParticle Swarm Optimization Algorithm
作者:
徐敏袁建洲刘四新等.
南昌大学信息工程学院,江西南昌,330031, 江西省安福县供电公司,江西安福,343200, 河南省禹州市电力工业公司,河南禹州,461670
Author(s):
XU MinYUAN JianzhouLIU Sixin
1. Information Engineering School, Nanchang University, Nanchang 330031 ,China; 2. Jiangxi An’fu Power Supply Company,An’fu 343200,China; 3.Henan Power Supply Company, Yuzhou 461670,China
关键词:
支持向量机 风电功率预测 改进粒子群优化算法 精度
Keywords:
SVM wind power prediction MPSO precision
分类号:
TM614
DOI:
10.3969/j.issn.1671-6833.2012.06.008
摘要:
针对传统支持向量机(SVM)模型在风电功率预测中存在的参数选取问题,提出一种新的预测模型,采用改进的粒子群(MPSO)优化算法寻求SVM的最优参数模型,经典粒子群算法是一种全局优化算法,在此基础上提出改进的粒子群算法.算例结果表明,经MPSO优化的SVM模型应用于短期风电功率预测是有效的,使其预测精度有所提高.
Abstract:
In view of the parameter selection problems existing in the traditional support vector machine( SVM ) model in wind power prediction,this paper puts forward a new forecasting model: with modified parti.cle swarm optimization algorithm ( MPSO ) for the optimal parameters of the SVM model, the classical PSO isa global optimization algorithm. Based on it, the modified PSO( MPSO )is proposed. Results show that theSVM model optimized by the MPSO is effective in short-term wind power prediction, and the prediction preci.sion is improved.

相似文献/References:

[1]张震张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报(工学版),2015,36(03):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
 ZHANG Zhen,ZHANG Ying-jie.Iris Recognition Method Based on Support Vector Machine and Hamming Distance[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):25.[doi:10.3969/ j.issn.1671 -6833.2015.03.006]
[2]张炎亮刘阳王金凤.基于改进SVM的煤矿水灾害救援组织系统可靠性预测[J].郑州大学学报(工学版),2015,36(03):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
 ZHANG Yan-liang,LIU Yang,WANG Jin-feng.Reliability Prediction of Coal Mine Water Disasters EmergencyRescue System Based on Improved SVM[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):115.[doi:10.3969/ j.issn.1671 - 6833.2015.03.025]
[3]李蒙蒙,尚志刚,李志辉.结合投影与近邻操作的支持向量快速筛选方法[J].郑州大学学报(工学版),2017,38(03):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
 Li Mengmeng,Shang Zhigang,Li Zhihui.Fast Method to Filter Support Vectors Combined with Operation of Projection and Nearest Neighbors’ Selection[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):49.[doi:10.13705/j.issn.1671-6833.2016.06.003]
[4]耿亚南,邓计才.基于人工鱼群优化SVM的声磁标签信号检测研究[J].郑州大学学报(工学版),2017,38(04):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
 Deng Jicai,Geng Yanan.Improved AFSA Optimization of SVM in The Application of Magnetic EAS Acoustic Signal Detection[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):35.[doi:10.13705/j.issn.1671-6833.2017.04.001]
[5]曾庆山,宋庆祥,范明莉.基于光流共生矩阵的人群行为异常检测[J].郑州大学学报(工学版),2018,39(03):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
 Zeng Qingshan,Song Qingxiang,Fan Mingli.Detection of Human Behavior Anomaly Based on the Optical Flow Co-occurrence Matrix[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):29.[doi:10.13705/j.issn.1671-6833.2017.06.032]
[6]雷文平,吴小龙,陈超宇,等.基于自动编码器和SVM的轴承故障诊断方法[J].郑州大学学报(工学版),2018,39(05):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
 Lei Wenping,Wu Xiaolong,Chen Chaoyu,et al.The Application of SVM Based on Auto-encoder in Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):68.[doi:10.13705/j.issn.1671-6833.2018.05.013]
[7]王杰,姜念,张毅..SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报(工学版),2011,32(01):75.[doi:10.3969/j.issn.1671-6833.2011.01.019]
[8]王杰,陈锴鹏..基于决策函数及PSO优化的SVM预测控制应用研究[J].郑州大学学报(工学版),2013,34(02):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]
 WANG Jie,CHEN Kai-peng.Application Study of SVM Predictive Control Based on DecisionFunctions Simplification and Pso Optimization[J].Journal of Zhengzhou University (Engineering Science),2013,34(06):53.[doi:10.3969/j.issn.1671-6833.2013.02.014]
[9]吴振龙,莫艺鹏,王荣花,等.基于 LSTM 和粒子群算法的多机组风电功率预测[J].郑州大学学报(工学版),2024,45(06):114.[doi:10.13705/j.issn.1671-6833.2024.06.005]
 WU Zhenlong,MO Yipeng,WANG Ronghua,et al.Multi-unit Wind Power Prediction Based on Long Short-term Memory andParticle Swarm Optimization[J].Journal of Zhengzhou University (Engineering Science),2024,45(06):114.[doi:10.13705/j.issn.1671-6833.2024.06.005]

更新日期/Last Update: 1900-01-01