[1]王永林,王杰..基于GAOT的PID控制器参数整定研究[J].郑州大学学报(工学版),2005,26(02):102-105.[doi:10.3969/j.issn.1671-6833.2005.02.026]
 WANG Yonglin,Wang Jie.Research on parameter tuning of PID controller based on GAOT[J].Journal of Zhengzhou University (Engineering Science),2005,26(02):102-105.[doi:10.3969/j.issn.1671-6833.2005.02.026]
点击复制

基于GAOT的PID控制器参数整定研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
26
期数:
2005年02期
页码:
102-105
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Research on parameter tuning of PID controller based on GAOT
作者:
王永林王杰.
中原工学院电子信息学院,河南,郑州,450007, 郑州大学电气工程学院,河南,郑州,450002
Author(s):
WANG Yonglin; Wang Jie
关键词:
遗传算法优化工具箱 遗传算法 PID 参数整定
Keywords:
DOI:
10.3969/j.issn.1671-6833.2005.02.026
文献标志码:
A
摘要:
遗传算法是一种具有极高鲁棒性和广泛适用性的全局优化方法,遗传算法优化工具箱(GAOT)为遗传算法的推广和应用提供了良好的工具,它采用模块化设计,包含了常用的遗传算子.针对传统PID参数整定的一些局限性,利用遗传算法优化工具箱对PID控制器参数进行整定.分析了遗传算法的应用步骤、GAOT的基本用法和GAOT与控制器参数整定的接口方法,利用仿真试验将该方法与Ziegler-Nichols法和工程品质最佳法进行比较.仿真结果表明:该方法几乎无超调,且过渡时间最短,可明显提高系统性能.
Abstract:
Genetic algorithm is a global optimization method with extremely robust and wide applicability, genetic algorithm optimization toolbox (GAOT) provides a good tool for the promotion and application of genetic algorithm, it adopts modular design, including commonly used genetic operators. In view of some limitations of traditional PID parameter tuning, the genetic algorithm optimization toolbox is used to tune the PID controller parameters. The application steps of genetic algorithm, the basic usage of GAOT and the interface method of GAOT and controller parameter tuning are analyzed, and the method is compared with the Ziegler-Nichols method and the best engineering quality method by simulation experiments. The simulation results show that the proposed method has almost no overshoot and the shortest transition time, which can significantly improve the system performance.

相似文献/References:

[1]杨文强,张素君,郭昊.求解仓储作业优化问题的多物种协同进化算法[J].郑州大学学报(工学版),2020,41(06):33.[doi:10.13705/j.issn.1671-6833.2019.03.030]
 YANG Wenqiang,ZHANG Sujun,GUO Hao.Operation Optimization of Warehousing by Multispecies Co-evolution Algorithm[J].Journal of Zhengzhou University (Engineering Science),2020,41(02):33.[doi:10.13705/j.issn.1671-6833.2019.03.030]
[2]段向军,王敏..基于改进的奇异值和遗传算法的人脸识别研究[J].郑州大学学报(工学版),2010,31(04):69.[doi:10.3969/j.issn.1671-6833.2010.04.017]
[3]杨华芬,杨有,尚晋..一种改进的进化神经网络优化设计方法[J].郑州大学学报(工学版),2010,31(05):116.[doi:10.3969/j.issn.1671-6833.2010.05.028]
[4]冯冬青,孔祥伟,许仿..城市恒压变频供水系统的一种智能优化控制策略[J].郑州大学学报(工学版),2011,32(01):85.[doi:10.3969/j.issn.1671-6833.2011.01.021]
[5]李阳,赵华东,杨威..基于遗传算法的二维不规则形排样研究[J].郑州大学学报(工学版),2011,32(04):56.[doi:10.3969/j.issn.1671-6833.2011.04.014]
[6]刘银芳,陈国荣,尤国英,等.基于microGA和有限元的混凝土坝热学参数反分析[J].郑州大学学报(工学版),2011,32(06):63.
 LIU Yin-fangCHEN Guo-rong,YOU Guo-ying,JIANG Chao.Back Analysis for Thermal Parameters of Concrete Dam with MicroGenetic Algorithm and Finite Element Method[J].Journal of Zhengzhou University (Engineering Science),2011,32(02):63.
[7]孙文彬,孙芳锦..大跨度屋盖风振控制的遗传算法研究[J].郑州大学学报(工学版),2012,33(01):40.[doi:10.3969/j.issn.1671-6833.2012.01.010]
 SUN Wenbin,SUN Fangjin.Study on Genetic Algorithms in Controlling of Wind-inducedVibration of Long-span Roofs[J].Journal of Zhengzhou University (Engineering Science),2012,33(02):40.[doi:10.3969/j.issn.1671-6833.2012.01.010]
[8]刘景艳,李玉东,杨晓邦..遗传神经网络在齿轮故障诊断中的应用[J].郑州大学学报(工学版),2012,33(03):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
 LIU Jingyan,LI Yudong,YANG Xiaobang.Application of Genetic Neural Network to Gear Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2012,33(02):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
[9]孔金生,肖天,徐津..基于混合遗传免疫粒群优化的网络拥塞控制方法[J].郑州大学学报(工学版),2013,34(02):57.[doi:10.3969/j. issn.1671 - 6833.2013.02.015]
 KONG Jin-sheng,XIAO Tian,XU Jin.Network Congestion Control Method Based on Hybrid Genetic ImmuneParticle Swarm Optimization[J].Journal of Zhengzhou University (Engineering Science),2013,34(02):57.[doi:10.3969/j. issn.1671 - 6833.2013.02.015]
[10]王来军,胡大伟,高扬..基于场景规划的随机型设施定位问题优化研究[J].郑州大学学报(工学版),2013,34(06):94.[doi:10.3969/j.issn.1671-6833.2013.06.023]
 WANGLaijun,HU Da·wei,GAO Yang.Researchon Optimization ofStochastic Facility Location Problem Based onScenario Planning[J].Journal of Zhengzhou University (Engineering Science),2013,34(02):94.[doi:10.3969/j.issn.1671-6833.2013.06.023]

更新日期/Last Update: 1900-01-01