[1]郑元勋,范聪聪,王博立,等.基于准静态应变影响线的拱桥吊杆损伤识别及评估[J].郑州大学学报(工学版),2024,45(03):14-21.[doi:10. 13705 / j. issn. 1671-6833. 2023. 06. 008]
 ZHENG Yuanxun,FAN Congcong,WANG Boli,et al.Identification and Assessment of Damage to Arch Bridge Booms Based on Quasi-static Strain Impact Lines[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):14-21.[doi:10. 13705 / j. issn. 1671-6833. 2023. 06. 008]
点击复制

基于准静态应变影响线的拱桥吊杆损伤识别及评估()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45卷
期数:
2024年03期
页码:
14-21
栏目:
出版日期:
2024-04-20

文章信息/Info

Title:
Identification and Assessment of Damage to Arch Bridge Booms Based on Quasi-static Strain Impact Lines
文章编号:
1671-6833(2024)03-0014-08
作者:
郑元勋12 范聪聪12 王博立12 王长柱3 郭 攀12
1. 郑州大学 黄河实验室,河南 郑州 450001;2. 郑州大学 水利与交通学院,河南 郑州 450001;3. 中交第三公路工 程局有限公司,北京 100304
Author(s):
ZHENG Yuanxun 12 FAN Congcong 12 WANG Boli 12 WANG Changzhu 3 GUO Pan 12
1. Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China; 2. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 3. CCCC Third Highway Engineering Co. , Ltd. , Beijing 100304, China
关键词:
桥梁工程 下承式系杆拱桥 应变影响线差值曲率 吊杆 损伤评估
Keywords:
bridge engineering down-bearing tied arch bridge strain-influenced line difference curvature booms damage assessment
分类号:
U466TU37
DOI:
10. 13705 / j. issn. 1671-6833. 2023. 06. 008
文献标志码:
A
摘要:
为解决拱桥吊杆损伤的精确识别难题,建立了一种下承式系杆拱桥简化力学模型,并通过力法推导得到 了下承式系杆拱桥吊杆应变影响线解析式,据此提出了一种基于下承式系杆拱桥吊杆准静态应变影响线指标的损 伤识别方法。 借助有限元法验证了该方法对于常规吊杆数目拱桥的适用性,并利用有限元模型算例研究了测试噪 声、损伤位置、损伤程度、损伤类别对损伤评估结果的影响,提出了科学的车辆加载实施方案。 研究结果表明:在 10%的测试噪声内,准静态应变影响线差值曲率法能精准定位拱桥吊杆的局部损伤位置,并可定量评估其损伤程 度,在系梁、风撑、拱肋等其他结构损伤时,该方法仍具有良好的识别效果。
Abstract:
In order to solve the problem of accurate identification of arch bridge boom damage, in this study a simplified mechanical model of an under-bearing tied arch bridge was established and the analytic formula of boom strain influence line of under-bearing tied arch bridge was obtained by force method derivation. Based on that, the damage identification method boom was proposed based on quasi-static strain influence line index of under-bearing tied arch bridge. Then the applicability of the method for conventional boom number arch bridge was verified with the help of finite element method. And the influence of test noise, damage location, damage degree, and damage category on the damage assessment results was studied by using finite element model calculations. A scientific implementation plan for vehicle loading was proposed. The results showed that within 10% test noise, the quasi-static strain-influence line difference curvature method could accurately locate the local damage location of arch bridge booms and quantitatively assess their damage degree. The method still had a good recognition effect when other structures, such as tie beams, wind braces, and arch ribs, were damaged.

参考文献/References:

[1] ZHENG X, YANG D H, YI T H, et al. Development of bridge influence line identification methods based on direct measurement data: a comprehensive review and comparison [J]. Engineering Structures, 2019, 198: 109539.

 [2] QU C X, YI T H, LI H N. Mode identification by eigensystem realization algorithm through virtual frequency response function[ J] . Structural Control and Health Monitoring, 2019, 26(10) : e2429. 
[3] 李戎, 杨萌, 刘林霞, 等. 水下 FG 圆柱壳临界载荷和 固有频率 预 测 方 法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2021, 42(1) :70-76. LI R, YANG M, LIU L X, et al. Prediction method for critical buckling pressure and natural frequency of submerged functionally graded cylindrical shell[ J] . Journal of Zhengzhou University ( Engineering Science) , 2021, 42(1) :70-76. 
[4] POOYA S M H, MASSUMI A. A novel damage detection method in beam-like structures based on the relation between modal kinetic energy and modal strain energy and using only damaged structure data[ J] . Journal of Sound and Vibration, 2022, 530: 116943. 
[5] 周宇, 狄生奎, 王立宪, 等. 基于柔度指标的系杆拱 桥损伤 识 别 与 寿 命 预 测 [ J] . 防 灾 减 灾 工 程 学 报, 2018, 38(6) : 1033-1043. ZHOU Y, DI S K, WANG L X, et al. Damage detection and life prediction of tied arch bridge based on flexibilitycurvature-difference-rate[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(6): 1033-1043.
 [6] 王立宪, 周宇, 狄生奎, 等. 考虑边界非理想的铁路 桥梁挠度影响线分析与损伤识别[ J] . 工程科学与技 术, 2020, 52(3) :123-132. WANG L X, ZHOU Y, DI S K, et al. Influence line analysis and damage detection of railway bridge deflection with non-ideal boundaries [ J]. Journal of Sichuan University (Engineering Science Edition), 2020, 52(3):123-132. 
[7] 周宇, 狄生奎, 项长生, 等. 基于弹性约束支承梁转 角影响线的梁结构损伤诊断[ J] . 浙江大学学报( 工 学版) , 2020, 54(5) :879-888. ZHOU Y, DI S K, XIANG C S, et al. Beam structure damage detection based on rotational-angle-influence-lines of elastic-constrained-support beam [ J] . Journal of Zhejiang University ( Engineering Science) , 2020, 54 ( 5) : 879-888.
 [8] 王艺霖, 张平, 安新梅. 基于竖向支座反力的两跨连 续梁桥损伤定位方法[ J] . 中国公路学报, 2014, 27 (4) :79-84, 105. WANG Y L, ZHANG P, AN X M. Two-span continuous bridge damage localization method based on vertical support reaction[ J] . China Journal of Highway and Transport, 2014, 27(4) :79-84, 105.
 [9] WU B T, WU G, YANG C Q. Parametric study of a rapid bridge assessment method using distributed macrostrain influence envelope line [ J ] . Mechanical Systems and Signal Processing, 2019, 120: 642-663. [10] CHEN S Z, WU G, WU B T. Simultaneous identification method of damage and vehicle parameters on bridges utilizing long-gauge strain influence line under moving vehicle loads [ J ] . Proceeding of the SPIE, 2017, 10168: 573-582.
 [11] YANG J, HOU P, YANG C Q, et al. Study on the method of moving load identification based on strain influence line[ J] . Applied Sciences, 2021, 11(2) : 853. 
[12] 周宇, 狄生奎, 李喜梅, 等. 基于弹性约束梁应变影 响线曲率的桥梁结构损伤识别[ J] . 应用基础与工程 科学学报, 2021, 29(4) : 901-914. ZHOU Y, DI S K, LI X M, et al. Damage identification of bridge structural based on strain influence line curvature of elastic restrained beam[ J] . Journal of Basic Science and Engineering, 2021, 29(4) : 901-914.
 [13] 王涛, 张丽莎, 高岩. 基于 BP 神经网络的改进型新 奇检测技术诊断大跨度拱桥异常状态[ J] . 北京理工 大学学报, 2016, 36(2) :157-162. WANG T, ZHANG L S, GAO Y. Abnormality identification of large-span arch bridge based on BP neural improved novelty detection technique [ J ] . Transactions of Beijing Institute of Technology, 2016, 36(2) :157-162. 
[14] 张安琳, 张启坤, 黄道颖, 等. 基于 CNN 与 BiGRU 融 合神经网络的入侵检测模型[ J] . 郑州大学学报( 工 学版) , 2022, 43(3) : 37-43. ZHANG A L, ZHANG Q K, HUANG D Y, et al. Intrusion detection model based on CNN and BiGRU fused neural network [ J ] . Journal of Zhengzhou University (Engineering Science) , 2022, 43(3) : 37-43. 
[15] SEN S, ASWAL N, ZHANG Q H, et al. Structural health monitoring with non-linear sensor measurements robust to unknown non-stationary input forcing[J]. Mechanical Systems and Signal Processing, 2021, 152: 107472.

相似文献/References:

[1]邬晓光,贺攀,何启光,等.陕西省连续箱梁桥底板实测竖向温度梯度研究[J].郑州大学学报(工学版),2019,40(03):13.[doi:10.13705/j.issn.1671-6833.2018.06.006]
 Wu Xiaoguang,He Pan,He Qilong,et al.Study on Measured Vertical Temperature Gradient of Continuous Box Beam Bridge in Shaanxi Province[J].Journal of Zhengzhou University (Engineering Science),2019,40(03):13.[doi:10.13705/j.issn.1671-6833.2018.06.006]
[2]张岗,贺拴海..非稳对流模式下混凝土箱梁内生热场与计算方法[J].郑州大学学报(工学版),2010,31(04):11.[doi:10.3969/j.issn.1671-6833.2010.04.003]
[3]白桦,刘健新,胡庆安..大跨度半拱式异形桥梁抗风性能研究[J].郑州大学学报(工学版),2010,31(05):22.[doi:10.3969/j.issn.1671-6833.2010.05.006]
[4]张俊光,刘永健,姚晓荣,等.刚性悬索加劲钢桁梁桥结构参数敏感性分析[J].郑州大学学报(工学版),2010,31(05):55.[doi:10.3969/j.issn.1671-6833.2010.05.014]
[5]任翔,何青,佟阳,等.混凝土桥塔温度场和空间应力场分析[J].郑州大学学报(工学版),2011,32(02):62.[doi:10.3969/j.issn.1671-6833.2011.02.016]
[6]闫磊,任伟..FRP加固桥梁受弯构件的可靠性分析[J].郑州大学学报(工学版),2011,32(02):80.[doi:10.3969/j.issn.1671-6833.2011.02.020]
[7]吝红育,刘永健,任翔..矩形钢管混凝土桁架静力性能非线性有限元分析[J].郑州大学学报(工学版),2011,32(05):15.[doi:10.3969/j.issn.1671-6833.2011.05.004]
[8]蒋培文,贺拴海,宋一凡,等.多车辆一大跨连续梁桥耦合振动响应分析[J].郑州大学学报(工学版),2011,32(05):91.[doi:10.3969/j.issn.1671-6833.2011.05.023]
[9]高小妮,贺拴海,宋一凡..基于两类结构形式的索梁锚固区力学行为分析[J].郑州大学学报(工学版),2012,33(06):59.[doi:10.3969/j.issn.1671-6833.2012.06.014]
[10]胡圣能..桥梁景观评价的集对分析模型[J].郑州大学学报(工学版),2013,34(04):36.[doi:10.3969/j.issn.1671-6833.2013.04.009]

更新日期/Last Update: 2024-04-29