[1]高攀科,谢永利..隧道软弱围岩的改进BP神经网络位移反分析[J].郑州大学学报(工学版),2013,34(01):23-26.[doi:10.3969/j.issn.1671-6833.2013.01.006]
 GA0 Pan-ke,XIE Yong-li.Displacement Back Analysis of Tunnels in Soft and Weak RocksBased on Improved BP Neural Network Method[J].Journal of Zhengzhou University (Engineering Science),2013,34(01):23-26.[doi:10.3969/j.issn.1671-6833.2013.01.006]
点击复制

隧道软弱围岩的改进BP神经网络位移反分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
34
期数:
2013年01期
页码:
23-26
栏目:
出版日期:
2013-01-16

文章信息/Info

Title:
Displacement Back Analysis of Tunnels in Soft and Weak RocksBased on Improved BP Neural Network Method
作者:
高攀科谢永利.
长安大学公路学院,陕西西安710064;陕西铁路工程职业技术学院,陕西渭南714099, 长安大学公路学院,陕西西安,710064
Author(s):
GA0 Pan-ke12XIE Yong-li1
1.School of Highway , Chang’an University ,Xi’an 710064,China;2.Shanxi Railway Institute,Weinan 714099,China
关键词:
隧道工程 神经网络 反分析 位移 软弱围岩
Keywords:
tunnelling neural network back analysis displacement soft and weak rock
分类号:
U451
DOI:
10.3969/j.issn.1671-6833.2013.01.006
文献标志码:
A
摘要:
基于一般BP神经网络特点,特别是在缺陷认识的基础上,采用改进BP神经网络对隧道软弱围岩进行位移反分析.通过增加神经元输出反馈量、运用二分法原理确定隐层单元数和改进惯性校正法、变步长算法、改进误差函数等方法,分别从BP神经网络结构和算法两个方面进行改进.并将现场监测数值和反分析计算位移值进行比较,其综合相对误差均控制在4%以内,取得了良好效果.成功将有限元数值仿真与BP神经网络原理结合,可为软弱围岩隧道设计和施工提供准确可靠的参数信息.
Abstract:
Based on the realization of the defects in the general BP( error back propagation algorithm ) artificialneural network( ANN ) , an approach based on improved BP ANN for displacement back analysis of soft andweak rocks for tunnels is proposed in this paper. This BP ANN was improved in two ways , neural structure andalgorithm, by using increased feedback in output of neural cell , dichotomy theory to chose neurals’number ofhidden layer , improved inertia revise,algorithm,varying step-size algorithm ,improved error function.The in-tegrated error between monitor number and simulation number was controled with in 4% . Aiming at the exactand dependable parameters for construction of tunnels with soft and weak rocks,BP ANN was combined withFEM (finite element modeling ) numerical simulation successfully.

相似文献/References:

[1]琚新刚,郭海鸥,郭敏..基于径向基神经网络的乙醇气体检测仪仿真分析[J].郑州大学学报(工学版),2010,31(03):61.[doi:10.3969/j.issn.1671-6833.2010.03.016]
 Ju Xingang,Guo Haiou,Guo Min.Simulation analysis of ethanol gas detector based on radial basis neural network[J].Journal of Zhengzhou University (Engineering Science),2010,31(01):61.[doi:10.3969/j.issn.1671-6833.2010.03.016]
[2]任锐,谢永利..海底隧道竖井口污染物扩散的数值分析及应用[J].郑州大学学报(工学版),2010,31(05):90.[doi:10.3969/j.issn.1671-6833.2010.05.022]
[3]郑甲佳,范俊玲..黄土地铁三连拱隧道中隔墙受力体系转换研究[J].郑州大学学报(工学版),2011,32(02):66.[doi:10.3969/j.issn.1671-6833.2011.02.017]
[4]曾庆山,全书鹏,靳志强..融合BP神经网络与ARIMA的短时交通流预测[J].郑州大学学报(工学版),2011,32(04):60.[doi:10.3969/j.issn.1671-6833.2011.04.015]
[5]刘景艳,李玉东,杨晓邦..遗传神经网络在齿轮故障诊断中的应用[J].郑州大学学报(工学版),2012,33(03):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
 LIU Jingyan,LI Yudong,YANG Xiaobang.Application of Genetic Neural Network to Gear Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2012,33(01):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
[6]孙芳锦,张大明,殷志祥..基于图像识别和神经网络的大跨度结构风荷载模拟[J].郑州大学学报(工学版),2008,29(04):116.[doi:10.3969/j.issn.1671-6833.2008.04.027]
 SUN Fangjin,ZHANG Daming,Yin Zhixiang.Wind load simulation of large-span structure based on image recognition and neural network[J].Journal of Zhengzhou University (Engineering Science),2008,29(01):116.[doi:10.3969/j.issn.1671-6833.2008.04.027]
[7]任松,姜德义,杨春和..基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J].郑州大学学报(工学版),2006,27(03):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
 Ren Song,JIANG Deyi,Yang Chunhe.Prediction of surface settlement neural network for shallow buried tunnel excavation based on genetic algorithm[J].Journal of Zhengzhou University (Engineering Science),2006,27(01):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
[8]李清富,成子桥,刘建民..混凝土结构剩余寿命的预测[J].郑州大学学报(工学版),2003,24(01):11.[doi:10.3969/j.issn.1671-6833.2003.01.003]
 LI Qingfu,Chengzi Bridge,Liu Jianmin.Prediction of the remaining life of concrete structures[J].Journal of Zhengzhou University (Engineering Science),2003,24(01):11.[doi:10.3969/j.issn.1671-6833.2003.01.003]
[9]张鸿河,关惠玲..基于包络分析的自行火炮变速箱故障诊断研究[J].郑州大学学报(工学版),2003,24(03):91.[doi:10.3969/j.issn.1671-6833.2003.03.023]
[10]冯冬青,张希平..基于神经网络的自学习模糊控制[J].郑州大学学报(工学版),2003,24(04):6.[doi:10.3969/j.issn.1671-6833.2003.04.002]
 Feng Dongqing,Zhang Xiping.Self-learning fuzzy control based on neural network[J].Journal of Zhengzhou University (Engineering Science),2003,24(01):6.[doi:10.3969/j.issn.1671-6833.2003.04.002]

更新日期/Last Update: 1900-01-01