[1]冯冬青,郭艳..遗传算法改进BP神经网络在地下水水质评价中的应用[J].郑州大学学报(工学版),2009,30(03):126-129.
 FENG Dongqing,GUO Yan.Application of Imoproved BP Neural Networks Based on Genetic Algorithms toGroundwater Quality Evaluation[J].Journal of Zhengzhou University (Engineering Science),2009,30(03):126-129.
点击复制

遗传算法改进BP神经网络在地下水水质评价中的应用()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
30
期数:
2009年03期
页码:
126-129
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Application of Imoproved BP Neural Networks Based on Genetic Algorithms toGroundwater Quality Evaluation
作者:
冯冬青郭艳.
郑州大学电气工程学院,河南,郑州,450001, 郑州大学电气工程学院,河南,郑州,450001
Author(s):
FENG Dongqing; GUO Yan
School of Electrical Engineering,Zhengzhou University,Zhengzhou 450001,China
关键词:
BP神经网络 遗传算法 水质评价
Keywords:
BP neural networks genetic algorithms Water quality evaluation
文献标志码:
A
摘要:
为了准确、高效地评定地下水水质,提出了一种遗传算法与神经网络相结合的混合评价算法,针对水质评价的多变量和非线性,采用BP神经网络对其进行综合评价计算,BP算法易陷入局部极小的缺点则通过引入遗传算法来克服,将两者有机的结合起来实现神经网络的训练和知识库的建立.通过算法比较和实例结果分析,证明了该算法的有效性.
Abstract:
A hybrid evaluation algorithm is proposed in this paper by combining BP neural network with genetic algorithms,in order to evaluate groundwater quality accurately and efficiently.In view of the multi—varia·ble and nonlinear characteristics of water assessment,BP neural network is introduced here to make compre—hensive evaluation and calculation.As for the shortcoming that BP algorithm is easily trapped to a local optimum,it can be overcomed through the introduction of genetic algorithms,and the two will work organically together to achieve the training and knowledge base establishment of the neural network.Through the compari—son of the algorithms and analysis of the results of the examples,the result shows this algorithm is valid.

相似文献/References:

[1]刘广瑞,周文博,田欣,等.多传感器信息融合在焊接质量控制中的应用[J].郑州大学学报(工学版),2017,38(05):28.[doi:10.13705/j.issn.1671-6833.2017.02.025]
 Liu Guangrui,Zhou Wenbo,Tian Xin,et al.Application of Information Fusion in Welding based on Arc and Ultrasonic sensor[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):28.[doi:10.13705/j.issn.1671-6833.2017.02.025]
[2]蔡婉贞,黄 翰.基于 BP-RBF神经网络的组合模型预测港口物流需求研究[J].郑州大学学报(工学版),2019,40(05):84.[doi:10.13705/j.issn.1671-6833.2019.02.025]
 Cai Wanzhen,Huang Han.Research on Port Logistics Demand Forecasting Based on Combination Model of BP-RBF Neural Network[J].Journal of Zhengzhou University (Engineering Science),2019,40(03):84.[doi:10.13705/j.issn.1671-6833.2019.02.025]
[3]孙国栋,江亚杰,徐亮,等.BP网络预测阈值的仪表重影字符识别方法研究[J].郑州大学学报(工学版),2020,41(04):28.[doi:10.13705/j.issn.1671-6833.2020.04.011]
 SUN Guodong,JIANG Yajie,XU Liang,et al.Study on Instrument Ghosting Character Recognition Method for Predicting Binarization Threshold by BP Network[J].Journal of Zhengzhou University (Engineering Science),2020,41(03):28.[doi:10.13705/j.issn.1671-6833.2020.04.011]
[4]杨文强,张素君,郭昊.求解仓储作业优化问题的多物种协同进化算法[J].郑州大学学报(工学版),2020,41(06):33.[doi:10.13705/j.issn.1671-6833.2019.03.030]
 YANG Wenqiang,ZHANG Sujun,GUO Hao.Operation Optimization of Warehousing by Multispecies Co-evolution Algorithm[J].Journal of Zhengzhou University (Engineering Science),2020,41(03):33.[doi:10.13705/j.issn.1671-6833.2019.03.030]
[5]段向军,王敏..基于改进的奇异值和遗传算法的人脸识别研究[J].郑州大学学报(工学版),2010,31(04):69.[doi:10.3969/j.issn.1671-6833.2010.04.017]
[6]杨华芬,杨有,尚晋..一种改进的进化神经网络优化设计方法[J].郑州大学学报(工学版),2010,31(05):116.[doi:10.3969/j.issn.1671-6833.2010.05.028]
[7]冯冬青,孔祥伟,许仿..城市恒压变频供水系统的一种智能优化控制策略[J].郑州大学学报(工学版),2011,32(01):85.[doi:10.3969/j.issn.1671-6833.2011.01.021]
[8]李阳,赵华东,杨威..基于遗传算法的二维不规则形排样研究[J].郑州大学学报(工学版),2011,32(04):56.[doi:10.3969/j.issn.1671-6833.2011.04.014]
[9]刘银芳,陈国荣,尤国英,等.基于microGA和有限元的混凝土坝热学参数反分析[J].郑州大学学报(工学版),2011,32(06):63.
 LIU Yin-fangCHEN Guo-rong,YOU Guo-ying,JIANG Chao.Back Analysis for Thermal Parameters of Concrete Dam with MicroGenetic Algorithm and Finite Element Method[J].Journal of Zhengzhou University (Engineering Science),2011,32(03):63.
[10]孙文彬,孙芳锦..大跨度屋盖风振控制的遗传算法研究[J].郑州大学学报(工学版),2012,33(01):40.[doi:10.3969/j.issn.1671-6833.2012.01.010]
 SUN Wenbin,SUN Fangjin.Study on Genetic Algorithms in Controlling of Wind-inducedVibration of Long-span Roofs[J].Journal of Zhengzhou University (Engineering Science),2012,33(03):40.[doi:10.3969/j.issn.1671-6833.2012.01.010]

更新日期/Last Update: 1900-01-01