[1]樊亚军,曲仕茹..利用BP神经网络实现三维飞机目标识别[J].郑州大学学报(工学版),2004,25(04):56-59.[doi:10.3969/j.issn.1671-6833.2004.04.015]
 Fan Yajun,Qu Shiru.BP neural network is used to realize three-dimensional aircraft target recognition[J].Journal of Zhengzhou University (Engineering Science),2004,25(04):56-59.[doi:10.3969/j.issn.1671-6833.2004.04.015]
点击复制

利用BP神经网络实现三维飞机目标识别()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
25
期数:
2004年04期
页码:
56-59
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:

BP neural network is used to realize three-dimensional aircraft target recognition
作者:
樊亚军曲仕茹.
西北工业大学机电工程及自动化学院,陕西,西安,710072, 西北工业大学机电工程及自动化学院,陕西,西安,710072
Author(s):
Fan Yajun; Qu Shiru
关键词:
神经网络 模式识别 BP算法 矩不变量
Keywords:
DOI:
10.3969/j.issn.1671-6833.2004.04.015
文献标志码:
A
摘要:
提出了一种新的飞机识别系统,采用矩的不变量的方法描述飞机的特征;采用Levenberg-Marquardt算法及弹性算法对标准的BP网络算法进行改进,从而使此系统具有识别过程迅速、稳定的特点.分别对民航机和战斗机的360张100×100不同姿态的图片进行系统识别,结果表明,该系统识别准确率在99%以上,并且识别速度较快.
Abstract:
A new aircraft identification system is proposed, which adopts the method of moment invariant to describe the characteristics of aircraft. The Levenberg-Marquardt algorithm and elastic algorithm are used to improve the standard BP network algorithm, so that the system has the characteristics of rapid and stable recognition process. The ×results show that the recognition accuracy of the system is above 360% and the recognition speed is relatively fast.

相似文献/References:

[1]蒋建东,张豪杰,王静.基于HHT的电力负荷组合预测应用[J].郑州大学学报(工学版),2015,36(04):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
 JIANG Jian-dong,ZHANG Hao-jie,WANG Jing.Research and Application of HHT-Based Power Load Combination Forecasting[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
[2]邓万宇,李力,牛慧娟.基于Spark的并行极速神经网络[J].郑州大学学报(工学版),2016,37(05):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
 Deng Wanyu,Li Li,Niu Huijuan.Sparked-based Parallel Extreme Learning Machine[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
[3]肖斌,张恒宾,刘宏伟.改进PSO-BPNN算法在管道腐蚀预测中的应用[J].郑州大学学报(工学版),2022,43(01):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
 XIAO Bin,ZHANG Hengbin,LIU Hongwei.Application of Improved PSO-BPNN Algorithm in Corroded Pipelines Prediction[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
[4]杨华芬,杨有,尚晋..一种改进的进化神经网络优化设计方法[J].郑州大学学报(工学版),2010,31(05):116.[doi:10.3969/j.issn.1671-6833.2010.05.028]
[5]周洪煜,陈晓煜,徐春霞..预测控制在中央空调净化系统中的应用[J].郑州大学学报(工学版),2008,29(03):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
 ZHOU Hongyu,CHEN Xiaoyu,Xu Chunxia.Application of predictive control in central air conditioning purification system[J].Journal of Zhengzhou University (Engineering Science),2008,29(04):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
[6]郭克希,谭佩莲,唐进元..基于人工神经网络的螺旋锥齿轮磨削加工表面粗糙度预测[J].郑州大学学报(工学版),2009,30(03):65.
 GUO Kexi,TAN Peilian,TANG Jinyuan.Surface Roughness Forecasting of Spiral Bevel Gear Based on Artificial Neural Network[J].Journal of Zhengzhou University (Engineering Science),2009,30(04):65.
[7]齐保林,李凌均,李志农..基于支持向量机的故障模式识别研究[J].郑州大学学报(工学版),2007,28(01):9.[doi:10.3969/j.issn.1671-6833.2007.01.003]
 Qi Baolin,LI Lingjun,Li Zhinong.Research on failure mode recognition based on support vector machine[J].Journal of Zhengzhou University (Engineering Science),2007,28(04):9.[doi:10.3969/j.issn.1671-6833.2007.01.003]
[8]刘伟,刘赞,王玲玲..神经网络与结构编码法预测直馏汽油色谱保留指数[J].郑州大学学报(工学版),2004,25(03):26.[doi:10.3969/j.issn.1671-6833.2004.03.007]
 LIU Wei,LIU Zan,Wang Lingling.Neural network and structural coding method to predict the chromatographic retention index of straight-run gasoline[J].Journal of Zhengzhou University (Engineering Science),2004,25(04):26.[doi:10.3969/j.issn.1671-6833.2004.03.007]
[9]王少波,柴艳丽,梁醒培..神经网络学习样本点的选取方法比较[J].郑州大学学报(工学版),2003,24(01):63.[doi:10.3969/j.issn.1671-6833.2003.01.014]
 Wang Shaobo,Chai Yanli,Liang Xingpei.Comparison of the selection methods of neural network learning sample points[J].Journal of Zhengzhou University (Engineering Science),2003,24(04):63.[doi:10.3969/j.issn.1671-6833.2003.01.014]
[10]杨金才,王栋..提高Hamming模糊贴近度分辨率的研究[J].郑州大学学报(工学版),2002,23(03):53.[doi:10.3969/j.issn.1671-6833.2002.03.014]
 Yang Jincai,Wang Dong.A study to improve Hamming’s fuzzy proximity resolution[J].Journal of Zhengzhou University (Engineering Science),2002,23(04):53.[doi:10.3969/j.issn.1671-6833.2002.03.014]

更新日期/Last Update: 1900-01-01