[1]刘应梅,杨宛辉,章健,等.基于人工神经网络的变电站故障诊断[J].郑州大学学报(工学版),1999,20(04):86-88.[doi:10.3969/j.issn.1671-6833.1999.04.027]
 LIU Yingmei,Yang Wanhui,ZHANG Jian,et al.Substation fault diagnosis based on artificial neural network[J].Journal of Zhengzhou University (Engineering Science),1999,20(04):86-88.[doi:10.3969/j.issn.1671-6833.1999.04.027]
点击复制

基于人工神经网络的变电站故障诊断()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
20
期数:
1999年04期
页码:
86-88
栏目:
出版日期:
1999-01-01

文章信息/Info

Title:
Substation fault diagnosis based on artificial neural network
作者:
刘应梅杨宛辉章健等.
郑州工业大学电气信息工程学院,河南,郑州,450002, 郑州白鸽,集团,有限责任公司,河南,郑州,450006
Author(s):
LIU Yingmei; Yang Wanhui; ZHANG Jian; etc
关键词:
神经网络 故障诊断 变电站
Keywords:
neural networks Fault diagnosis Substations
DOI:
10.3969/j.issn.1671-6833.1999.04.027
文献标志码:
A
摘要:
个绍了一种利用人工神经网络(ANN)实现变电站故障诊断的方法,该方法充分利用人工神经网络所具有的强大的学习能力及高度的容错性等特点,实现对变电站故障元件的诊断.仿真结果表明,该方法不仅能准确地诊断出保护、开关正确动作时的故障元件,也可有效地诊断出因保护或开关拒动的越级故障时的故障元件.
Abstract:
This method uses artificial neural network (ANN) to realize substation fault diagnosis, which makes full use of the strong learning ability and high fault tolerance of artificial neural network to realize the diagnosis of substation fault components. The simulation results show that this method can not only accurately diagnose the faulty components when the protection and switch operate correctly, but also effectively diagnose the faulty components when the protection or switch rejects the leapfrog fault.

相似文献/References:

[1]蒋建东,张豪杰,王静.基于HHT的电力负荷组合预测应用[J].郑州大学学报(工学版),2015,36(04):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
 JIANG Jian-dong,ZHANG Hao-jie,WANG Jing.Research and Application of HHT-Based Power Load Combination Forecasting[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
[2]邓万宇,李力,牛慧娟.基于Spark的并行极速神经网络[J].郑州大学学报(工学版),2016,37(05):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
 Deng Wanyu,Li Li,Niu Huijuan.Sparked-based Parallel Extreme Learning Machine[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
[3]雷文平,宋圣霖,郝旺身,等.基于FV-FBE的滚动轴承故障诊断研究[J].郑州大学学报(工学版),2020,41(05):82.[doi:10.13705/j.issn.1671-6833.2020.03.020]
 LEI Wenping,SONG Shenglin,HAO Wangshen,et al.Fault Diagnosis of Rolling Bearing Based on FV-FBE[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):82.[doi:10.13705/j.issn.1671-6833.2020.03.020]
[4]肖斌,张恒宾,刘宏伟.改进PSO-BPNN算法在管道腐蚀预测中的应用[J].郑州大学学报(工学版),2022,43(01):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
 XIAO Bin,ZHANG Hengbin,LIU Hongwei.Application of Improved PSO-BPNN Algorithm in Corroded Pipelines Prediction[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
[5]王杰,王晓换..滚动轴承故障诊断虚拟系统的实现[J].郑州大学学报(工学版),2010,31(02):120.
 WANG Jie,WANG Xiaochange.Development of a Virtual Fault Diagnostic System For Rolling Bearing[J].Journal of Zhengzhou University (Engineering Science),2010,31(04):120.
[6]王忠勇,张振兴,段琳琳,等.基于故障树的某型舰炮故障诊断系统的设计与实现[J].郑州大学学报(工学版),2010,31(03):46.[doi:10.3969/j.issn.1671-6833.2010.03.012]
 Wang Zhongyong,ZHANG Zhenxing,DUAN Linlin,et al.Design and implementation of a certain type of naval gun fault diagnosis system based on fault tree[J].Journal of Zhengzhou University (Engineering Science),2010,31(04):46.[doi:10.3969/j.issn.1671-6833.2010.03.012]
[7]杨华芬,杨有,尚晋..一种改进的进化神经网络优化设计方法[J].郑州大学学报(工学版),2010,31(05):116.[doi:10.3969/j.issn.1671-6833.2010.05.028]
[8]刘景艳,李玉东,杨晓邦..遗传神经网络在齿轮故障诊断中的应用[J].郑州大学学报(工学版),2012,33(03):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
 LIU Jingyan,LI Yudong,YANG Xiaobang.Application of Genetic Neural Network to Gear Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2012,33(04):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
[9]周洪煜,陈晓煜,徐春霞..预测控制在中央空调净化系统中的应用[J].郑州大学学报(工学版),2008,29(03):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
 ZHOU Hongyu,CHEN Xiaoyu,Xu Chunxia.Application of predictive control in central air conditioning purification system[J].Journal of Zhengzhou University (Engineering Science),2008,29(04):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
[10]郭克希,谭佩莲,唐进元..基于人工神经网络的螺旋锥齿轮磨削加工表面粗糙度预测[J].郑州大学学报(工学版),2009,30(03):65.
 GUO Kexi,TAN Peilian,TANG Jinyuan.Surface Roughness Forecasting of Spiral Bevel Gear Based on Artificial Neural Network[J].Journal of Zhengzhou University (Engineering Science),2009,30(04):65.

更新日期/Last Update: 1900-01-01