[1]郝伟,徐敏,张瑞林.神经网络聚类方法在旋转机械故障诊断中的应用研究[J].郑州大学学报(工学版),1995,16(04):7-12.
 Hao Wei,Xu Min,Zhang Ruilin.Application research of neural network clustering methods in rotating mechanical failure diagnosis[J].Journal of Zhengzhou University (Engineering Science),1995,16(04):7-12.
点击复制

神经网络聚类方法在旋转机械故障诊断中的应用研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
16
期数:
1995年04期
页码:
7-12
栏目:
出版日期:
1995-04-28

文章信息/Info

Title:
Application research of neural network clustering methods in rotating mechanical failure diagnosis
作者:
郝伟徐敏张瑞林
上海交通大学,郑州工学院
Author(s):
Hao Wei Xu Min Zhang Ruilin
Shanghai Jiaotong University, Zhengzhou Institute of Technology
关键词:
神经网络聚类学习方法旋转机械故障诊断
Keywords:
Neural network clustering learning method rotating mechanical failure diagnosis
文献标志码:
A
摘要:
在基于神经网络的聚类学习方法。分有监督学习方法和无监督学习方法。本文采用无监督学习方法对旋转机械中常见故障的分类进行了较为详细的研究,以此分类结果来达到故障诊断的目的,文中还具体描述了该算法的实现方法。研究结果表明,该方法克服了有监督学习方法的旋转机械故障诊断技术的某些缺陷,是进行大型旋转机械故障诊断的一种行之有效的方法。
Abstract:
In a clustering learning method based on neural networks. There are supervision learning methods and unsupervised learning methods. This article uses unsupervised learning methods to conduct more detailed research on the classification of common faults in rotating machinery. With this classification result, the purpose of fault diagnosis is also described in the article to describe the implementation method of the algorithm. The results show that this method overcomes some defects of rotating mechanical failure diagnostic techniques with supervision and learning methods, and is an effective method for the diagnosis of large -scale rotation mechanical failure.

相似文献/References:

[1]蒋建东,张豪杰,王静.基于HHT的电力负荷组合预测应用[J].郑州大学学报(工学版),2015,36(04):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
 JIANG Jian-dong,ZHANG Hao-jie,WANG Jing.Research and Application of HHT-Based Power Load Combination Forecasting[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
[2]邓万宇,李力,牛慧娟.基于Spark的并行极速神经网络[J].郑州大学学报(工学版),2016,37(05):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
 Deng Wanyu,Li Li,Niu Huijuan.Sparked-based Parallel Extreme Learning Machine[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
[3]肖斌,张恒宾,刘宏伟.改进PSO-BPNN算法在管道腐蚀预测中的应用[J].郑州大学学报(工学版),2022,43(01):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
 XIAO Bin,ZHANG Hengbin,LIU Hongwei.Application of Improved PSO-BPNN Algorithm in Corroded Pipelines Prediction[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
[4]杨华芬,杨有,尚晋..一种改进的进化神经网络优化设计方法[J].郑州大学学报(工学版),2010,31(05):116.[doi:10.3969/j.issn.1671-6833.2010.05.028]
[5]周洪煜,陈晓煜,徐春霞..预测控制在中央空调净化系统中的应用[J].郑州大学学报(工学版),2008,29(03):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
 ZHOU Hongyu,CHEN Xiaoyu,Xu Chunxia.Application of predictive control in central air conditioning purification system[J].Journal of Zhengzhou University (Engineering Science),2008,29(04):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
[6]郭克希,谭佩莲,唐进元..基于人工神经网络的螺旋锥齿轮磨削加工表面粗糙度预测[J].郑州大学学报(工学版),2009,30(03):65.
 GUO Kexi,TAN Peilian,TANG Jinyuan.Surface Roughness Forecasting of Spiral Bevel Gear Based on Artificial Neural Network[J].Journal of Zhengzhou University (Engineering Science),2009,30(04):65.
[7]刘伟,刘赞,王玲玲..神经网络与结构编码法预测直馏汽油色谱保留指数[J].郑州大学学报(工学版),2004,25(03):26.[doi:10.3969/j.issn.1671-6833.2004.03.007]
 LIU Wei,LIU Zan,Wang Lingling.Neural network and structural coding method to predict the chromatographic retention index of straight-run gasoline[J].Journal of Zhengzhou University (Engineering Science),2004,25(04):26.[doi:10.3969/j.issn.1671-6833.2004.03.007]
[8]樊亚军,曲仕茹..利用BP神经网络实现三维飞机目标识别[J].郑州大学学报(工学版),2004,25(04):56.[doi:10.3969/j.issn.1671-6833.2004.04.015]
 Fan Yajun,Qu Shiru.BP neural network is used to realize three-dimensional aircraft target recognition[J].Journal of Zhengzhou University (Engineering Science),2004,25(04):56.[doi:10.3969/j.issn.1671-6833.2004.04.015]
[9]王少波,柴艳丽,梁醒培..神经网络学习样本点的选取方法比较[J].郑州大学学报(工学版),2003,24(01):63.[doi:10.3969/j.issn.1671-6833.2003.01.014]
 Wang Shaobo,Chai Yanli,Liang Xingpei.Comparison of the selection methods of neural network learning sample points[J].Journal of Zhengzhou University (Engineering Science),2003,24(04):63.[doi:10.3969/j.issn.1671-6833.2003.01.014]
[10]刘应梅,杨宛辉,章健,等.基于人工神经网络的变电站故障诊断[J].郑州大学学报(工学版),1999,20(04):86.[doi:10.3969/j.issn.1671-6833.1999.04.027]
 LIU Yingmei,Yang Wanhui,ZHANG Jian,et al.Substation fault diagnosis based on artificial neural network[J].Journal of Zhengzhou University (Engineering Science),1999,20(04):86.[doi:10.3969/j.issn.1671-6833.1999.04.027]

更新日期/Last Update: 1900-01-01