[1]李 琳,刘成林,韩秀丽,等.糠醛渣活性炭对4,4′-硫代二苯酚和双酚F 的吸附性能[J].郑州大学学报(工学版),2024,45(03):134-142.[doi:10. 13705/ j. issn. 1671-6833. 2023. 06. 004]
 LI Lin,LIU Chenglin,HAN Xiuli,et al.Adsorption Characteristics of 4,4′-Thiodiphenol and Bisphenol F by Activated Carbon Derived from Furfural Residue[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):134-142.[doi:10. 13705/ j. issn. 1671-6833. 2023. 06. 004]
点击复制

糠醛渣活性炭对4,4′-硫代二苯酚和双酚F 的吸附性能()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45卷
期数:
2024年03期
页码:
134-142
栏目:
出版日期:
2024-04-20

文章信息/Info

Title:
Adsorption Characteristics of 4,4′-Thiodiphenol and Bisphenol F by Activated Carbon Derived from Furfural Residue
文章编号:
1671-6833( 2024) 03-0134-09
作者:
李 琳1 刘成林1 韩秀丽12 常 春12 宋建德3
1. 郑州大学 化工学院,河南 郑州 450001;2. 郑州大学 河南省杰出外籍科学家工作室,河南 郑州 450001;3. 河南省生物基化学品绿色制造重点实验室,河南 濮阳 457000
Author(s):
LI Lin1 LIU Chenglin1 HAN Xiuli12 CHANG Chun12 SONG Jiande3
1. School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; 2. Henan Center for Outstanding Overseas Scientists, Zhengzhou University, Zhengzhou 450001, China; 3. Henan Key Laboratory of Green Manufacturing of Biobased Chemicals, Puyang 457000, China
关键词:
吸附 44′-硫代二苯酚 双酚F 活性炭 糠醛渣 吸附机理 热力学
Keywords:
adsorption 44′-thiodiphenol bisphenol F activated carbon furfural residue adsorption mechanism thermodynamics
分类号:
X703. 1
DOI:
10. 13705/ j. issn. 1671-6833. 2023. 06. 004
文献标志码:
A
摘要:
以固废糠醛渣为原料,水蒸气活化法制备糠醛渣活性炭( FRAC) ,研究其对水体中4,4′-硫代二苯酚( TDP)和双酚F( BPF) 的吸附性能,探讨了吸附时间、FRAC 用量、pH 值、温度以及TDP 和BPF 溶液的初始浓度对吸附过程的影响。研究结果表明:Sips 和Koble-Corrigan 等温模型可以很好地描述FRAC 对TDP 和BPF 的吸附平衡数据,FRAC 对TDP 和BPF 的吸附均是自发的放热过程。FRAC 对TDP 和BPF 的吸附过程均符合准二级动力学模型。另外,TDP 和BPF 在FRAC 上的吸附主要受到氢键、疏水作用、静电作用和π—π 相互作用的共同影响。在298 K时,FRAC 吸附TDP 和BPF 的最大吸附量分别为5. 408 3 mmol/ g 和3. 695 5 mmol/ g,表明FRAC 在处理内分泌干扰物废水上具有广泛的应用前景。
Abstract:
The activated carbon derived from furfural residue using steam activation was investigated for the adsorption 4,4′-thiodiphenol(TDP) and bisphenol F(BPF) from aqueous solution. Adsorption conditions including adsorption time, FRAC dosage, pH value, temperature and initial concentration were discussed. The results showed that adsorption equilibrium data of TDP and BPF onto FRAC were well described by the Sips and Koble-Corrigan isotherm models. Thermodynamic parameters revealed that the adsorption process of TDP and BPF on FRAC was spontaneous and exothermic process. The adsorption kinetics process of TDP and BPF conformed to the pseudo-second-order kinetic model. Besides, the adsorption of TDP and BPF on FRAC were mainly influenced by the hydrogen bonding, hydrophobic effect, electrostatic interaction and π-π interaction. At 298 K, the maximum adsorption capacities of FRAC for TDP and BPF were 5.408 3 mmol/g and 3.695 5 mmol/g, respectively, implying that the FRAC had a good application in endocrine disruptors wastewater treatment.

参考文献/References:

[1] ZDARTA J, ANTECKA K, FRANKOWSKI R, et al. The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds[J]. Science of the Total Environment, 2018, 615: 784-795.

[2] GUO H, PENG L E, YAO Z K, et al. Non-polyamide based nanofiltration membranes using green metal-organic coordination complexes: implications for the removal of trace organic contaminants[J]. Environmental Science & Technology, 2019, 53(5): 2688-2694.
[3] MOUSSAVI G, POURAKBAR M, SHEKOOHIYAN S, et al. The photochemical decomposition and detoxification of bisphenol A in the VUV/ H2 O2 process: degradation, mineralization, and cytotoxicity assessment[J]. Chemical Engineering Journal, 2018, 331: 755-764.
[4] REZANIA S, CHO J, DERAKHSHAN NEJAD Z, et al. Microporous metal-organic frameworks against endocrinedisruptor bisphenol A: parametric evaluation and optimization[ J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127039.
[5] CAI J Z, ZHANG P L, KANG S J, et al. Fast and efficient adsorption of bisphenols pollutants from water by using Hydroxypropyl-β-cyclodextrin polymer[J]. Reactive and Functional Polymers, 2020, 154: 104678.
[6] MA M J, YING H J, CAO F F, et al. Adsorption of Congo red on mesoporous activated carbon prepared by CO2 physical activation[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1069-1076.
[7] LIU C L, LIANG L L, HAN X L, et al. Optimized preparation of activated carbon from furfural residue using response surface methodology and its application for bisphenol S adsorption [ J]. Water Science and Technology, 2022, 85(3): 811-826.
[8] ACOSTA R, NABARLATZ D, SÁNCHEZ-SÁNCHEZ A, et al. Adsorption of bisphenol A on KOH-activated tyre pyrolysis char [ J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 823-833.
[9] ZHANG H, SUN Y M, LI S, et al. Preparation, characterization, and efficient chromium ( Ⅵ ) adsorption of phosphoric acid activated carbon from furfural residue: an industrial waste [ J]. Water Science and Technology, 2020, 82(12): 2864-2876.
[10] SHI X X, QIAO Y Y, AN X X, et al. High-capacity adsorption of Cr(Ⅵ) by lignin-based composite: characterization, performance and mechanism[J]. International Journal of Biological Macromolecules, 2020, 159: 839-849.
[11] ZHU G Z, DENG X L, HOU M, et al. Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues [ J]. Fuel Processing Technology, 2016, 144: 255-261.
[12] KYZAS G Z, DELIYANNI E A, MATIS K A. Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490: 74-83.
[13] 丁雅琴. 基于4, 4′-二羟基二苯硫醚光学树脂制备及 性能[D]. 武汉: 华中科技大学,2017. DING Y Q. Preparation and property of optical resin based on 4,4′-dihydroxy diphenyl sulfide[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[14] ZHU M P, ZHOU K B, SUN X D, et al. Hydrophobic N-doped porous biocarbon from dopamine for high selective adsorption of p-Xylene under humid conditions[J]. Chemical Engineering Journal, 2017, 317: 660-672.
[15] LIU L, CUI W, LU C, et al. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: functional groups dependence of adsorption performance and mechanisms[J]. Journal of Environmental Management, 2020, 268: 110630.
[16] LIANG L L, NIU X Y, HAN X L, et al. Salt sealing induced in situ N-doped porous carbon derived from wheat bran for the removal of doxycycline from aqueous solution [ J ]. Environmental Science and Pollution Research, 2022, 29(32): 49346-49360.
[17] LV Y C, ZHANG R S, ZENG S L, et al. Removal of parsanilic acid by an amino-functionalized indium-based metal-organic framework: adsorption behavior and synergetic mechanism [ J ]. Chemical Engineering Journal, 2018, 339: 359-368.
[18] BELTRAME K K, CAZETTA A L, DE SOUZA P S C, et al. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves[J]. Ecotoxicology and Environmental Safety, 2018, 147: 64-71.
[19] WU P F, CAI Z W, JIN H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J]. Science of the Total Environment, 2019, 650: 671-678.
[20] 张迪, 杨迪, 徐翠, 等. 还原氧化石墨烯高效吸附双酚 F 的机理研究[J]. 材料导报, 2019, 33(6):954-959. ZHANG D, YANG D, XU C, et al. Study on mechanism of highly effective adsorption of bisphenol F by reduced graphene oxide[ J]. Materials Review, 2019, 33 ( 6): 954-959.

相似文献/References:

[1]范忠雷,马翔宇,李瑞瑞,等.吸附剂浓度对Cu(II)/ IIP-PAA/SiO2吸附体系的影响[J].郑州大学学报(工学版),2017,38(03):35.[doi:10.13705/j.issn.1671-6833.2017.03.003]
 Fan Zhonglei,Ma Xiangyu,Li Ruirui,et al.Effect of sorbent concentration on Cu(II) adsorption at surface ion-imprinted poly(allylamine)-silica material[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):35.[doi:10.13705/j.issn.1671-6833.2017.03.003]
[2]盛遵荣,薛冰,刘周明,等.颗粒直径与轴向分布对吸附热变换器传热传质的影响[J].郑州大学学报(工学版),2017,38(04):17.[doi:10.3969/j.issn.1671-6833.2017.01.011]
 Sheng Zunrong,Xue Bing,Liu Zhouming,et al.Effect of particle diameter and particle axial distribution on heat and mass transfer inside adsorption heat transformer[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):17.[doi:10.3969/j.issn.1671-6833.2017.01.011]
[3]史春燕,范冰冰,李娅娅,等.锆氧化物/石墨烯的制备及其对PO43-的吸附性能[J].郑州大学学报(工学版),2017,38(04):23.[doi:10.13705/j.issn.1671-6833.2017.01.009]
 Shi Chunyan,Fan Bingbing,Li Yaya,et al.Preparation of Zirconium Oxide / Graphene Composites and their Adsorption Properties for PO43-[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):23.[doi:10.13705/j.issn.1671-6833.2017.01.009]
[4]韩润平,房丽燕,李小钰,等.聚乙烯亚胺负载四氧化三铁对刚果红的吸附性能[J].郑州大学学报(工学版),2019,40(02):62.[doi:10.13705/j.issn.1671-6833.2019.02.009]
 Han Runping,Fang Liyan,Li Xiaoyu,et al.Removal of Congo red by polyethylenimine@Fe3O4 magnetic composites in batch mode[J].Journal of Zhengzhou University (Engineering Science),2019,40(03):62.[doi:10.13705/j.issn.1671-6833.2019.02.009]
[5]邹卫华,刘鹏磊,刘秋节,等.磁性活性炭对水体中磺胺嘧啶钠的吸附机理研究[J].郑州大学学报(工学版),2020,41(04):92.[doi:10.13705/j.issn.1671-6833.2020.01.008]
 ZOU Weihua,LIU Penglei,LIU Qiujie,et al.Investigation into the Adsorption Mechanism of Sulfadiazine Sodium in Aqueous Solution Using Magnetic Biochar[J].Journal of Zhengzhou University (Engineering Science),2020,41(03):92.[doi:10.13705/j.issn.1671-6833.2020.01.008]
[6]李强,段浩宇,高镜清,等.矿渣硅酸盐水泥除磷性能与机理研究[J].郑州大学学报(工学版),2022,43(03):73.[doi:10.13705/j.issn.1671-6833.2021.06.007]
 Research on Phosphorus Removal Performance of Portland Blast Furnace Slag Cement.Research on Phosphorus Removal Performance of Portland Blast Furnace Slag Cement[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):73.[doi:10.13705/j.issn.1671-6833.2021.06.007]
[7]张晓羽,郭红博,邹卫华.PEI改性沙柳对水中酸性铬兰K的吸附作用研究[J].郑州大学学报(工学版),2022,43(03):87.[doi:10.13705/j.issn.1671-6833.2022.03.002]
 ZHANG Xiaoyu,GUO Hongbo,ZOU Weihua.Investigation into the Adsorption Mechanism of Acid Chrome Blue K in Aqueous Solution Using Polyethyleneimine Modified Salix[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):87.[doi:10.13705/j.issn.1671-6833.2022.03.002]
[8]韩秀丽,王伟,李红萍..生物质材料荷叶对碱性品红的吸附性能研究[J].郑州大学学报(工学版),2011,32(03):10.[doi:10.3969/j.issn.1671-6833.2011.03.003]
[9]曹军艳,葛庆平,李娇娇,等.高效液相色谱法测定电合成反应液中的3,6-DCP和3,4,5,6-TCP[J].郑州大学学报(工学版),2012,33(06):100.[doi:10.3969/j.issn.1671-6833.2012.06.024]
[10]高广颖,蒋元力,黄强,等.考虑载体影响的液膜体系界面状态方程[J].郑州大学学报(工学版),1998,19(04):94.
 Gao Guangying,Jiang Yuanli,Huang Qiang,et al.Consider the liquid film system interface status equation that affects the carrier[J].Journal of Zhengzhou University (Engineering Science),1998,19(03):94.

备注/Memo

备注/Memo:
收稿日期:2023-05-06;修订日期:2023-06-13
基金项目:国家自然科学基金资助项目(22178328);河南省杰出外籍科学家工作室资助项目(GZS2022007)
通信作者:韩秀丽(1966— ),女,河南内黄人,郑州大学教授,博士,主要从事可再生能源和环境污染治理方面的研究,E-mail:xlhan@ zzu. edu. cn。
更新日期/Last Update: 2024-04-29