[1]刘艳红,张 宽,霍本岩,等.肌腱/绳驱动连续体机器人研究现状与展望[J].郑州大学学报(工学版),2023,44(03):3-13.[doi:10.13705/j.issn.1671-6833.2023.03.024]
 LIU Yanhong,ZHANG Kuan,HUO Benyan,et al.A Review on Status and Prospects of Tendon/Cable Driven Continuum Robot[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):3-13.[doi:10.13705/j.issn.1671-6833.2023.03.024]
点击复制

肌腱/绳驱动连续体机器人研究现状与展望()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年03期
页码:
3-13
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
A Review on Status and Prospects of Tendon/Cable Driven Continuum Robot
作者:
刘艳红12 张 宽12 霍本岩12 陈鹏冲12
1.郑州大学 电气与信息工程学院,河南 郑州 450001, 2.郑州大学 机器人感知与控制河南省工程研究中心,河南郑州 450001

Author(s):
LIU Yanhong12ZHANG Kuan12HUO Benyan12CHEN Pengchong12
Zhengzhou University School of Electrical and Information Engineering, Henan Zhengzhou 450001, Zhengzhou University Robot Perception and Control Henan Provincial Engineering Research Center, Henan Zhengzhou 450001

关键词:
绳驱动 机器人 运动学 动力学模型 控制策略
Keywords:
cable driven robot kinematics dynamic model control strategy
分类号:
TP24
DOI:
10.13705/j.issn.1671-6833.2023.03.024
文献标志码:
A
摘要:
为了促进肌腱/绳驱动连续体机器人的理论发展和实际应用,从建模方法和控制策略 2 个方面分析并总结 了现有研究成果。首先,介绍了常用肌腱/绳驱动连续体机器人的结构设计方法和发展趋势。在此基础上,总结了 肌腱/绳驱动连续体机器人常用的运动学建模和动力学建模方法,并从建模原理、模型精度、复杂度和计算效率等 方面对各种方法进行了对比,为不同应用场景下肌腱/绳驱动连续体机器人建模方法的选择提供了参考。其次,梳 理了肌腱/绳驱动连续体机器人控制中存在的模型失配、参数扰动和动态响应等问题产生的原因,以问题为导向, 将现有控制策略分为基于模型控制、无模型控制和混合控制 3 类,并对每种控制策略在开环和闭环应用场景中的 实施方法、优缺点和发展趋势进行了归纳总结。最后,指出了肌腱/绳驱动连续体机器人在建模和控制方面还存在 的研究挑战,并对其未来的发展方向进行了展望。
Abstract:
To promote the theoretical development and practical application of tendon /cable driven continuum robots,the relevant studies were analyzed and summarized from the aspect of modeling and control. Firstly,the structure design methods and development trend of tendon /cable driven continuum robots were introduced. On this basis,the kinematic and dynamic modeling methods of tendon /cable driven continuum robots were summarized. The modeling methods were compared from the view of modeling principles,model accuracy,complexity and computational efficiency,which would provide a guideline to select the modeling methods in different application scenarios. Then,the reason of model mismatch,parameter perturbation and dynamic response in the control of tendon / cable driven continuum robots was discussed and the existing control strategies were divided into three categories including model-based control,model-free control and hybrid control. The implementation methods,advantages and disadvantages and the development trends of control strategies in open loop and closed loop application scenarios were surveyed. Finally,the challenges in modeling and control of tendon /cable driven continuum robots were concluded and the future development direction was prospected

参考文献/References:

[1] ZHONG Y,HU L H,XU Y S. Recent advances in design and actuation of continuum robots for medical applications [J]. Actuators,2020,9( 4) : 142. 

[2] LI C,RAHN C D. Design of continuous backbone,cabledriven robots[J]. Journal of Mechanical Design,2002, 124( 2) : 265-271. 
[3] NEPPALLI S,JONES B A. Design,construction,and analysis of a continuum robot[C]∥2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE,2007: 1503-1507.
 [4] RENDA F,GIORELLI M,CALISTI M,et al. Dynamic  model of a multibending soft robot arm driven by cables [J]. IEEE Transactions on Robotics,2014,30 ( 5 ) : 1109-1122. 
[5] CAO K,KANG R J,BRANSON D T III,et al. Workspace analysis of tendon-driven continuum robots based on mechanical interference identification[J]. Journal of Mechanical Design,2017,139( 6) : 062303.
 [6] PANG S X,SHANG W W,ZHANG F,et al. Design and stiffness analysis of a novel 7-DOF cable-driven manipulator[J]. IEEE Robotics and Automation Letters,2022,7 ( 2) : 2811-2818. 
[7] OMISORE O M,HAN S P,XIONG J,et al. A review on flexible robotic systems for minimally invasive surgery [J]. IEEE Transactions on Systems,Man,and Cybernetics: Systems,2022,52( 1) : 631-644. [8] ZHONG Y,HU L H,XU Y S. Recent advances in design and actuation of continuum robots for medical applications [J]. Actuators,2020,9( 4) : 142. 
[9] LI S Y,HAO G B. Current trends and prospects in compliant continuum robots: a survey[J]. Actuators,2021, 10( 7) : 145.
 [10] KOLACHALAMA S, LAKSHMANAN S. Continuum robots for manipulation applications: a survey[J]. Journal of Robotics,2020,2020: 1-19. 
[11] WANG J,CHORTOS A. Control strategies for soft robot systems[J]. Advanced Intelligent Systems,2022,4 ( 5) : 2100165.
 [12] THURUTHEL T G,ANSARI Y,FALOTICO E,et al. Control strategies for soft robotic manipulators: a survey [J]. Soft Robotics,2018,5( 2) : 149-163.
 [13] WEBSTER R J,JONES B A. Design and kinematic modeling of constant curvature continuum robots: a review [J]. International Journal of Robotics Research,2010, 29( 13) : 1661-1683. 
[14] JONES B A,WALKER I D. Kinematics for multisection continuum robots[J]. IEEE Transactions on Robotics, 2006,22( 1) : 43-55. 
[15] BAJO A,SIMAAN N. Kinematics-based detection and localization of contacts along multisegment continuum robots [J]. IEEE Transactions on Robotics,2012,28( 2) : 291 -302. 
[16] GOLDMAN R E, BAJO A, SIMAAN N. Compliant motion control for multisegment continuum robots with actuation force sensing[J]. IEEE Transactions on Robotics, 2014,30( 4) : 890-902.
 [17] QI F,JU F,BAI D M,et al. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery [J]. The International Journal of Medical Robotics + Computer Assisted Surgery: MRCAS,2019,15( 4) : e2007.
 [18] ZHONG G L,PENG B W,DOU W Q. Kinematics analysis and trajectory planning of a continuum manipulator [J]. International Journal of Mechanical Sciences,2022, 222: 107206. 
[19] BARRIENTOS J,DONG X,AXINTE D,et al. Real-time kinematics of continuum robots: modelling and validation [J]. Robotics and Computer-integrated Manufacturing, 2021,67: 102019.
 [20] RENDA F,BOYER F,DIAS J,et al. Discrete cosserat approach for multisection soft manipulator dynamics[J]. IEEE Transactions on Robotics,2018,34 ( 6) : 1518 -1533.
 [21] LILGE S,NUELLE K,BOETTCHER G,et al. Tendon actuated continuous structures in planar parallel robots: a kinematic analysis[J]. Journal of Mechanisms and Robotics,2021,13( 1) : 011025. 
[22] BLACK C B,TILL J,RUCKER D C. Parallel continuum robots: modeling,analysis,and actuation-based force sensing[J]. IEEE Transactions on Robotics,2018,34 ( 1) : 29-47. 
[23] ZHAO B,ZENG L,WU Z,et al. A continuum manipulator for continuously variable stiffness and its stiffness control formulation[J]. Mechanism and Machine Theory, 2020,149: 103746.
 [24] GIORELLI M,RENDA F,CALISTI M,et al. Neural network and Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature[J]. IEEE Transactions on Robotics,2015,31 ( 4) : 823-834. 
[25] THURUTHEL T G,FALOTICO E,MANTI M,et al. Learning closed loop kinematic controllers for continuum manipulators in unstructured environments[J]. Soft Robotics,2017,4( 3) : 285-296. 
[26] WANG Y,YIP H W,ZHENG H,et al. Design and experimental validation of a miniaturized robotic tendondriven articulated surgical drill for enhancing distal dexterity in minimally invasive spine fusion[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26 ( 4 ) : 1858 -1866.
 [27] FALKENHAHN V,MAHL T,HILDEBRANDT A,et al. Dynamic modeling of bellows-actuated continuum robots using the Euler-Lagrange formalism [J ]. IEEE Transactions on Robotics,2015,31( 6) : 1483-1496.
 [28] YANG J Z,PENG H J,ZHOU W Y,et al. A modular approach for dynamic modeling of multisegment continuum robots[J]. Mechanism and Machine Theory, 2021, 165: 104429. 
[29] RONE W S,BEN-TZVI P. Continuum robot dynamics u- 10 郑 州 大 学 学 报 ( 工 学 版) 2023 年 tilizing the principle of virtual power[J]. IEEE Transactions on Robotics,2014,30( 1) : 275-287. 
[30] LIU Z Z,ZHANG X G,CAI Z Q,et al. Real-time dynamics of cable-driven continuum robots considering the cable constraint and friction effect[J]. IEEE Robotics and Automation Letters,2021,6( 4) : 6235-6242. 
[31] WANG H S,WANG C,CHEN W D,et al. Threedimensional dynamics for cable-driven soft manipulator [J]. IEEE/ASME Transactions on Mechatronics,2017, 22( 1) : 18-28. 
[32] GRAVAGNE I A,RAHN C D,WALKER I D. Large deflection dynamics and control for planar continuum robots [J]. IEEE/ASME Transactions on Mechatronics,2003, 8( 2) : 299-307. 
[33] RUCKER D C,WEBSTER III R J. Statics and dynamics of continuum robots with general tendon routing and external loading[J]. IEEE Transactions on Robotics,2011, 27( 6) : 1033-1044.
 [34] ALQUMSAN A A, KHOO S, NORTON M. Robust control of continuum robots using Cosserat rod theory[J]. Mechanism and Machine Theory,2019,131: 48-61. 
[35] JALALI A,JANABI-SHARIFI F. Dynamic modeling of tendon-driven co-manipulative continuum robots [J]. IEEE Robotics and Automation Letters,2022,7 ( 2) : 1643-1650. 
[36] PARVARESH A,MOOSAVIAN S A A. Linear vs. nonlinear modeling of continuum robotic arms using datadriven method[C]∥2019 7th International Conference on Robotics and Mechatronics ( ICRoM ) . Piscataway: IEEE,2020: 457-462. 
[37] THURUTHEL T G,FALOTICO E,RENDA F,et al. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators[J]. IEEE Transactions on Robotics,2019,35( 1) : 124-134.
 [38] CENTURELLI A,ARLEO L,RIZZO A,et al. Closedloop dynamic control of a soft manipulator using deep reinforcement learning[J]. IEEE Robotics and Automation Letters,2022,7( 2) : 4741-4748.
 [39] FICUCIELLO F,MIGLIOZZI A,COEVOET E,et al. FEM-based deformation control for dexterous manipulation of 3D soft objects[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS) . Piscataway: IEEE,2019: 4007-4013. 
[40] 王亚明. 航空发动机原位检测绳驱动机器人感知与控 制技术研究[D]. 南京: 南京航空航天大学,2020.
 WANG Y M. Research on perception and control technology of aero-engine in situ inspection rope driven robot [D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2020.
 [41] WANG Y F,ZHU C X,DING Y,et al. Feedforward neural network assisted configuration transition control of continuum surgical manipulators[C]∥27th International Conference on Mechatronics and Machine Vision in Practice ( M2VIP) . Piscataway: IEEE,2022: 617-622. 
[42] THOMAS T L,SIKORSKI J,ANANTHASURESH G K, et al. Design, sensing, and control of a magnetic compliant continuum manipulator[J]. IEEE Transactions on Medical Robotics and Bionics,2022,4 ( 4 ) : 910 -921. 
[43] FANG Y H,HILL S,BA W M,et al. A novel method to solve the inverse kinematics for continuum robots accelerated by PID theory[C]∥12th International Conference on CYBER Technology in Automation,Control,and Intelligent Systems ( CYBER) . Piscataway: IEEE,2022: 840-844. 
[44] ZHANG B Y,FAN Y W,YANG P H,et al. Worm-like soft robot for complicated tubular environments[J]. Soft Robotics,2019,6( 3) : 399-413. 
[45] PANG W,WANG J B,FEI Y Q. The structure,design, and closed-loop motion control of a differential drive soft robot[J]. Soft Robotics,2018,5( 1) : 71-80. 
[46] SANTINA C D,KATZSCHMANN R K,BICCHI A,et al. Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment[J]. International Journal of Robotics Research, 2020,39( 4) : 490-513. 
[47] LIANG X,HE G P,SU T T,et al. Finite-time observerbased variable impedance control of cable-driven continuum manipulators[J]. IEEE Transactions on HumanMachine Systems,2022,52( 1) : 26-40. 
[48] 海星朔,徐炳辉,任羿,等. 基于改进鸽群优化的机器 人自抗扰 控 制 方 法[J]. 郑 州 大 学 学 报 ( 工 学 版) , 2019,40( 4) : 20-24,31.
 HAI X S,XU B H,REN Y,et al. Robot active disturbance rejection control based on an enhanced pigeoninspired optimization[J]. Journal of Zhengzhou University ( Engineering Science) ,2019,40( 4) : 20-24,31. 
[49] 曾庆山,周亚帅,陶长春,等. 电驱动机械臂的自抗扰 鲁棒哈密顿跟踪控制[J]. 郑州大学学报( 工学版) , 2022,43( 4) : 1-7,15.
 ZENG Q S,ZHOU Y S,TAO C C,et al. Active disturbance rejection robust Hamiltonian tracking control of electrically driven manipulator[J]. Journal of Zhengzhou University ( Engineering Science) ,2022,43( 4) : 1-7,15. 
[50] 朱雨琪,向国菲,马丛俊,等. 基于建模优化的连续体 机器人轨迹跟踪及扰动抑制策略研究[J]. 空间控制 技术与应用,2022,48( 2) : 29-38.
 ZHU Y Q,XIANG G F,MA C J,et al. Trajectory tra- 第 3 期 刘艳红,等: 肌腱/绳驱动连续体机器人研究现状与展望 11 cking control and disturbance-rejection strategy for continuum robots with improved modeling method[J]. Aerospace Control and Application,2022,48( 2) : 29-38.
 [51] 邱小璐,蔡志勤,刘忠振,等. 空间连续型机器人自适 应鲁棒容错控制[J]. 计算力学学报,2021,38( 1) : 46-50. 
QIU X L,CAI Z Q,LIU Z Z,et al. Adaptive robust fault tolerant control of a space continuum robot[J]. Chinese Journal of Computational Mechanics,2021,38( 1) : 46 -50. 
[52] WATANABE Y,HIGASHIMORI M. Synergy-based analytical design of wire-driven continuum manipulators[J]. IEEE Robotics and Automation Letters,2022,7 ( 4) : 9310-9317. 
[53] YU P,TAN N,ZHANG M,et al. Inverse-free tracking control of continuum robots with unknown models based on gradient neural networks[C]∥2022 IEEE 11th Data Driven Control and Learning Systems Conference ( DDCLS) . Piscataway: IEEE,2022: 648-653. 
[54] TAN N,YU P,ZHANG M,et al. Towards unified adaptive teleoperation based on damping ZNN for robot manipulators with unknown kinematics[J]. IEEE Transactions on Industrial Electronics,2022,PP( 99) : 1-10.
 [55] 李进华,卜逸凡,李晓阳,等. 丝驱动连续体机器人的 无模型自适应控制[J]. 天津大学学报( 自然科学与工 程技术版) ,2022,55( 7) : 754-763.
 LI J H,BU Y F,LI X Y,et al. Model-free adaptive control for tendon-driven continuum robots[J]. Journal of Tianjin University ( Science and Technology) ,2022,55 ( 7) : 754-763. 
[56] KAMTIKAR S,MARRI S,WALT B,et al. Visual servoing for pose control of soft continuum arm in a structured environment[J]. IEEE Robotics and Automation Letters, 2022,7( 2) : 5504-5511. 
[57] GAO X F,LI X C,SUN Y,et al. Model-free tracking control of continuum manipulators with global stability and assigned accuracy[J]. IEEE Transactions on Systems,Man, and Cybernetics: Systems,2022,52( 2) : 1345-1355.
 [58] YIP M C, CAMARILLO D B. Model-less feedback control of continuum manipulators in constrained environments[J]. IEEE Transactions on Robotics,2014,30 ( 4) : 880-889. 
[59] ALOI V,DANG K T,BARTH E J,et al. Estimating forces along continuum robots[J]. IEEE Robotics and Automation Letters,2022,7( 4) : 8877-8884. 
[60] ZHAO Q X,LAI J W,HUANG K C,et al. Shape estimation and control of a soft continuum robot under external payloads [J]. IEEE/ASME Transactions on Mechatronics,2022,27( 5) : 2511-2522. 
[61] TANG Z Q,HEUNG H L,TONG K Y,et al. Modelbased online learning and adaptive control for a“humanwearable soft robot”integrated system[J]. International Journal of Robotics Researc

更新日期/Last Update: 2023-05-09