[1]樊一娜,梁伟,黄渝清,等.基于IGA 的配电系统运行损耗与可靠性优化[J].郑州大学学报(工学版),2019,40(05):58-63.[doi:10.13705/j.issn.1671-6833.2019.05.009]
 Fan Yina,Liang Wei,Huang Yuqing,et al.Optimization of operation loss and reliability of power distribution system based on IGA[J].Journal of Zhengzhou University (Engineering Science),2019,40(05):58-63.[doi:10.13705/j.issn.1671-6833.2019.05.009]
点击复制

基于IGA 的配电系统运行损耗与可靠性优化()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年05期
页码:
58-63
栏目:
出版日期:
2019-10-23

文章信息/Info

Title:
Optimization of operation loss and reliability of power distribution system based on IGA
作者:
樊一娜梁伟黄渝清赵东初陈圣博李明
北京师范大学珠海分校工程技术学院,广东珠海519087;山东省聊城市水利勘测设计院,山东聊城252061 ;复旦大学信息科学与工程学院,上海200433
Author(s):
Fan Yina 1Liang Wei 2Huang Yuqing 1Jo Dong Chu 1Chen Shengbo 1Li Ming 
1. School of Engineering Technology, Beijing Normal University Zhuhai Campus; 2. Liaocheng Water Conservancy Survey and Design Institute, Shandong Province; 3. School of Information Science and Engineering, Fudan University
关键词:
遗传算法损失最小化网络重构可靠性电力服务
Keywords:
genetic algorithm loss minimization network reconfiguration reliability service restoration
DOI:
10.13705/j.issn.1671-6833.2019.05.009
文献标志码:
A
摘要:
提出了 一种兼顾径向功率分配系统(RDS)的可靠性和效率的优化方案,目的是在网络重构 (DNR)的过程中使有功功率的损耗降低到最小.本文实质上是基于改进后遗传算法的网络分支故障分 析,即在暂态过程中重点分析保护系统对故障和恢复系统的响应.具体方法是首先采用基于分支可靠性 的非连续蒙特卡罗仿真方法对网络结构的可靠性进行预测,然后利用遗传算法,进行可实现的结构重构 和高效搜索.此外,本文在无投资的情况下分析了 RDS,将这种算法应用在一个69条线路的网络上,实 验结果证明了改进遗传算法的优越性.
Abstract:
This study focused on an optimization method that combined simultaneously the reliability and the efficiency of radial power distribution systems ( RDS) , minimized active energy losses, through a process of network reconfiguration. The study based on the failure analysis on network branches, with a special concern on the protection system response to faults and the service restoration procedures, in the emergency state. A non-sequential Monte Carlo simulation based on the branch reliability was used to evaluate reliability of the network configurations. Due to a large number of possible configurations and the need of an effcient search, the optimization was made through an improved genetic algorithm (IGA) . In a first step, the method analyed the RDS considering the absence of investment, and in a second step, the possibility of placing a limited number of new tie-switches in certain branches, according to the definitions made by a decision maker. The effectiveness of the proposed methodology was demonstrated through the analysis of a 69 bus RDS and by comparison against other reported methodologies.

相似文献/References:

[1]马欢张建伟赵进超.求解VRPSDP的变邻域混合遗传算法[J].郑州大学学报(工学版),2015,36(03):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
 MA Huan,ZHANG Jian-wei,ZHAO Jin-chao,et al.A Hybrid Genetic and Variable Neighborhood Descent Algorithm for VehicleRouting Problem with Simultaneous Delivery and Pickup[J].Journal of Zhengzhou University (Engineering Science),2015,36(05):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
[2]左士伟,杨胡萍,张扬,等.基于改进遗传算法的电力系统无功优化[J].郑州大学学报(工学版),2015,36(06):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
 YANG Huping,Ll Weiren,ZUO Shiwei,et al.Reactive Power Optimization by Improved Genetic Algorithm Method[J].Journal of Zhengzhou University (Engineering Science),2015,36(05):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
[3]陆森林,任栉翔.基于响应面法的车内噪声分析与优化[J].郑州大学学报(工学版),2017,38(05):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
 Lu Senlin,Ren Guxiang.Analysis and Optimization of Vehicle Inner Noise Based on Response Surface Method[J].Journal of Zhengzhou University (Engineering Science),2017,38(05):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
[4]蒋建东,王忆,张灵娟,等.基于遗传算法的背靠背换流站控制系统参数优化[J].郑州大学学报(工学版),2015,36(01):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
 JIANG Jian-dong,WANG Yi,ZHANG Ling-juan,et al.Parameter Optimization of Control System for Back to Back Converter Station based on Genetic Algorithm[J].Journal of Zhengzhou University (Engineering Science),2015,36(05):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
[5]穆瑞杰.基于遗传算法的地铁车站引导标识布点探析[J].郑州大学学报(工学版),2018,39(01):73.[doi:10.13705/j.issn.1671-6833.2018.01.019]
 Mu Ruijie.Analysis of Position Settings for Oriented Identifies of Subway Station[J].Journal of Zhengzhou University (Engineering Science),2018,39(05):73.[doi:10.13705/j.issn.1671-6833.2018.01.019]
[6]蒋佩华,华冰,黄宇,等.基于遗传算法的变质量航天器姿态控制方法 [J].郑州大学学报(工学版),2019,40(04):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
 Jiang Peihua,Huabing,Huang Yu,et al.The Attitude Control Method of Variable Mass Spacecraft Based on Genetic Algorithm [J].Journal of Zhengzhou University (Engineering Science),2019,40(05):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
[7]黄茜,王书勤,邓少鸿,等.不确定环境下救灾部队驻地选址及搜救路径优化[J].郑州大学学报(工学版),2021,42(05):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
 Huang Qian,Wang Shuqin,Deng Shaohong,et al.Study on Location-Routing Problem of Earthquake Relief Troops in Uncertain Unvironment[J].Journal of Zhengzhou University (Engineering Science),2021,42(05):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
[8]赵艳敏,霍达..基于遗传模拟退火算法的钢桁架结构优化设计[J].郑州大学学报(工学版),2011,32(06):54.
 ZHAO Yan-min,HUO Da.Optimal Design of Steel Truss Structure Based on Genetic Simulated Annealing Algorithm[J].Journal of Zhengzhou University (Engineering Science),2011,32(05):54.
[9]任松,姜德义,杨春和..基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J].郑州大学学报(工学版),2006,27(03):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
 Ren Song,JIANG Deyi,Yang Chunhe.Prediction of surface settlement neural network for shallow buried tunnel excavation based on genetic algorithm[J].Journal of Zhengzhou University (Engineering Science),2006,27(05):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
[10]杨丽娜,刘刚,王秋生..一种改进的遗传算法及其应用[J].郑州大学学报(工学版),2005,26(03):98.[doi:10.3969/j.issn.1671-6833.2005.03.026]
 Yang Lina,LIU Gang,Wang Qiusheng.An improved genetic algorithm and its application[J].Journal of Zhengzhou University (Engineering Science),2005,26(05):98.[doi:10.3969/j.issn.1671-6833.2005.03.026]

更新日期/Last Update: 2019-10-26