[1]刘凤娥,蔡迎春,乐金朝..遗传算法在路面材料参数识别中的应用研究[J].郑州大学学报(工学版),2002,23(01):104-107.[doi:10.3969/j.issn.1671-6833.2002.01.029]
 Liu Fenge,Cai Yingchun,Lejin Chao.Research on the application of genetic algorithm in the identification of pavement material parameters[J].Journal of Zhengzhou University (Engineering Science),2002,23(01):104-107.[doi:10.3969/j.issn.1671-6833.2002.01.029]
点击复制

遗传算法在路面材料参数识别中的应用研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
23
期数:
2002年01期
页码:
104-107
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Research on the application of genetic algorithm in the identification of pavement material parameters
作者:
刘凤娥蔡迎春乐金朝.
郑州工业大学环境与水利学院,河南,郑州,450002, 郑州工业大学环境与水利学院,河南,郑州,450002, 郑州工业大学环境与水利学院,河南,郑州,450002
Author(s):
Liu Feng’e; Cai Yingchun; Lejin Chao
关键词:
遗传算法 路面 模量反算
Keywords:
DOI:
10.3969/j.issn.1671-6833.2002.01.029
文献标志码:
A
摘要:
针对标准的遗传算法收敛速度慢的特点做了几点改进:在群体初始化中,以均匀产生初始群体代替随机产生;实行截断选择,隐含了最优保存策略;动态变异,将改进后的遗传算法和系统识别原理相结合,应用于路面反分析中.分别对理论数据和实测数据进行了计算分析,并和目前国内国际较通用的软件计算结果进行了比较分析.结果表明,改进后的遗传算法收敛速度快,具有较强的全局优化能力,利用该算法进行路面反演可以避免解病态方程,反演结果稳定可靠.
Abstract:
Several improvements have been made to the slow convergence speed of standard genetic algorithms: in population initialization, uniform generation of initial population instead of random generation; The implementation of truncated selection implies the optimal preservation strategy; Dynamic variation, combining the improved genetic algorithm and system recognition principle, is applied to pavement inverse analysis. The theoretical data and the measured data were calculated and analyzed, and the calculation results of the software that are more common at home and abroad were compared and analyzed. The results show that the improved genetic algorithm has fast convergence speed and strong global optimization ability, and the pavement inversion using the algorithm can avoid solving the sick equation, and the inversion results are stable and reliable.

相似文献/References:

[1]马欢张建伟赵进超.求解VRPSDP的变邻域混合遗传算法[J].郑州大学学报(工学版),2015,36(03):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
 MA Huan,ZHANG Jian-wei,ZHAO Jin-chao,et al.A Hybrid Genetic and Variable Neighborhood Descent Algorithm for VehicleRouting Problem with Simultaneous Delivery and Pickup[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
[2]左士伟,杨胡萍,张扬,等.基于改进遗传算法的电力系统无功优化[J].郑州大学学报(工学版),2015,36(06):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
 YANG Huping,Ll Weiren,ZUO Shiwei,et al.Reactive Power Optimization by Improved Genetic Algorithm Method[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
[3]陆森林,任栉翔.基于响应面法的车内噪声分析与优化[J].郑州大学学报(工学版),2017,38(05):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
 Lu Senlin,Ren Guxiang.Analysis and Optimization of Vehicle Inner Noise Based on Response Surface Method[J].Journal of Zhengzhou University (Engineering Science),2017,38(01):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
[4]蒋建东,王忆,张灵娟,等.基于遗传算法的背靠背换流站控制系统参数优化[J].郑州大学学报(工学版),2015,36(01):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
 JIANG Jian-dong,WANG Yi,ZHANG Ling-juan,et al.Parameter Optimization of Control System for Back to Back Converter Station based on Genetic Algorithm[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
[5]穆瑞杰.基于遗传算法的地铁车站引导标识布点探析[J].郑州大学学报(工学版),2018,39(01):73.[doi:10.13705/j.issn.1671-6833.2018.01.019]
 Mu Ruijie.Analysis of Position Settings for Oriented Identifies of Subway Station[J].Journal of Zhengzhou University (Engineering Science),2018,39(01):73.[doi:10.13705/j.issn.1671-6833.2018.01.019]
[6]蒋佩华,华冰,黄宇,等.基于遗传算法的变质量航天器姿态控制方法 [J].郑州大学学报(工学版),2019,40(04):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
 Jiang Peihua,Huabing,Huang Yu,et al.The Attitude Control Method of Variable Mass Spacecraft Based on Genetic Algorithm [J].Journal of Zhengzhou University (Engineering Science),2019,40(01):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
[7]樊一娜,梁伟,黄渝清,等.基于IGA 的配电系统运行损耗与可靠性优化[J].郑州大学学报(工学版),2019,40(05):58.[doi:10.13705/j.issn.1671-6833.2019.05.009]
 Fan Yina,Liang Wei,Huang Yuqing,et al.Optimization of operation loss and reliability of power distribution system based on IGA[J].Journal of Zhengzhou University (Engineering Science),2019,40(01):58.[doi:10.13705/j.issn.1671-6833.2019.05.009]
[8]黄茜,王书勤,邓少鸿,等.不确定环境下救灾部队驻地选址及搜救路径优化[J].郑州大学学报(工学版),2021,42(05):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
 Huang Qian,Wang Shuqin,Deng Shaohong,et al.Study on Location-Routing Problem of Earthquake Relief Troops in Uncertain Unvironment[J].Journal of Zhengzhou University (Engineering Science),2021,42(01):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
[9]赵艳敏,霍达..基于遗传模拟退火算法的钢桁架结构优化设计[J].郑州大学学报(工学版),2011,32(06):54.
 ZHAO Yan-min,HUO Da.Optimal Design of Steel Truss Structure Based on Genetic Simulated Annealing Algorithm[J].Journal of Zhengzhou University (Engineering Science),2011,32(01):54.
[10]任松,姜德义,杨春和..基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J].郑州大学学报(工学版),2006,27(03):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
 Ren Song,JIANG Deyi,Yang Chunhe.Prediction of surface settlement neural network for shallow buried tunnel excavation based on genetic algorithm[J].Journal of Zhengzhou University (Engineering Science),2006,27(01):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]

更新日期/Last Update: 1900-01-01