[1]杨孝才,贾秋红,屈 翔,等.操作参数对质子交换膜燃料电池冷却效果分析[J].郑州大学学报(工学版),2022,43(04):53-59.[doi:10.13705/j.issn.1671-6833.2022.04.006]
 YANG Xiaocai,JIA Qiuhong,QU Xiang,et al.Analysis of Cooling Effect of Operating Parameters on Proton Exchange Membrane Fuel Cells[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):53-59.[doi:10.13705/j.issn.1671-6833.2022.04.006]
点击复制

操作参数对质子交换膜燃料电池冷却效果分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年04期
页码:
53-59
栏目:
出版日期:
2022-07-03

文章信息/Info

Title:
Analysis of Cooling Effect of Operating Parameters on Proton Exchange Membrane Fuel Cells
作者:
杨孝才 贾秋红 屈 翔 朱 灵
重庆理工大学机械工程学院;

Author(s):
YANG XiaocaiJIA QiuhongQU XiangZHU Ling
School of Mechanical Engineering,Chongqing University of Technology,Chongqing 400054,China
关键词:
Keywords:
PEMFCthermal management systemcooling systemmodelinginfluence of operating parameters
分类号:
TM911
DOI:
10.13705/j.issn.1671-6833.2022.04.006
文献标志码:
A
摘要:
为了研究热管理系统操作参数对质子交换膜燃料电池冷却效果的影响, 基于 MATLAB / Simu- link 仿真平台建立了燃料电池热管理系统的动态模型并对模型的正确性进行了验证,该系统模型包括电堆电压、温度模型和冷却回路模型;以建立的系统模型为研究基础,以冷却系统中旁路阀开度、冷却液 流量、空气流量 3 个操作参数为独立变量,研究冷却液入口温度、出口温度和出入口温差随独立变量的变化规律和影响情况。 研究结果表明,空气流量对冷却液入口温度和出口温度影响最大,当空气流量从最小值增加到最大值的过程中,冷却液入口温度和出口温度分别随之下降 27. 9 ~ 29. 0 ℃ 、26. 6 ~ 28. 4 ℃ ;旁路阀开度和冷却液流量在一定范围内对冷却液入口温度和出口温度都有影响,前者的影响强于后者,旁 路阀开度在小于 0. 7 时影响作用更显著;冷却液流量对冷却液出、入口温度的影响最小,对冷却液出入口温差的影响最大,当冷却液流量从最小值增到最大值的过程中冷却液出入口温差下降约 9 ℃ 。
Abstract:
In order to study the influence of the operating parameter of thermal management system on the cooling effect of proton exchange membrane fuel cell (PEMFC),a dynamic model of the PEMFC thermal management system was established based on the MATLAB/Simulink simulation platform and the correctness of the system model was verified.The model included voltage model and temperature model of stack and cooling circuit model.Bypass valve opening,coolant flow,and air flow were regarded as independent variables and the change rule and influence of independent variables on coolant temperature at inlet and outlet and coolant temperature difference between inlet and outlet were studied through established system model.The results showed that when the air flow increased from the minimum to the maximum,the air flow had the greatest impact on the coolant temperature at inlet and outlet which droped by 27.9-29.0 ℃ and 26.6-28.4 ℃,respectively.Both bypass valve opening and coolant flow had an effect on the coolant temperature at inlet and outlet,meanwhile the former had a stronger effect than the latter and the effect of bypass valve opening was more prominent when it less than 0.7.Although the coolant flow had the smallest influence on the temperature of the coolant inlet and outlet,it had a dominant effect on the coolant temperature difference between the coolant inlet and outlet which droped by about 9 ℃ when the air flow increased from the minimum to the maximum.

参考文献/References:

[1] JIAO K, XUAN J, DU Q, et al. Designing the next generation of proton-exchange membrane fuel cells [ J] . Nature, 2021, 595(7867) : 361-369.

[2] CHINANNAI M F, LEE J, JU H. Study of the characteristics of temperature rise and coolant flow rate control during malfunction of PEM fuel cells[ J] . International journal of hydrogen energy, 2021, 46 ( 19 ) : 11160-11175.
[3] CHEN F, YU Y, GAO Y. Temperature control for proton exchange membrane fuel cell based on current constraint with consideration of limited cooling capacity [ J] . Fuel cells, 2017, 17(5) : 662-670.
[4] JIA Q H, HAN M, CHAM Y T, et al. Proton exchange membrane fuel cell ( PEMFC ) heat transfer model and dynamic heat response analysis [ J] . Advanced materials research, 2011 ( 236 / 237 / 238 ) : 2713-2716.
[5] NOLAN J, KOLODZIEJ J. Modeling of an automotive fuel cell thermal system[ J] . Journal of power sources, 2010, 195(15) : 4743-4752. 
[6] O′KEEFE D, EL-SHARKH M Y, TELOTTE J C, et al. Temperature dynamics and control of a watercooled fuel cell stack [ J] . Journal of power sources, 2014, 256: 470-478. 
[7] 郭爱, 陈维荣, 刘志祥, 等. 燃料电池机车热管理 系统建模 和 动 态 分 析 [ J ] . 西 南 交 通 大 学 学 报, 2015, 50(5) : 953-960. 
GUO A, CHEN W R, LIU Z X, et al. Modeling and dynamic analysis of thermal management system for fuel cell locomotive[ J] . Journal of southwest Jiaotong university, 2015, 50(5) : 953-960.
[8] 郭爱, 陈维荣, 李奇, 等. 燃料电池机车温度系统 建模和控制[ J] . 系统仿真学报, 2015, 27(1) : 133 -141. 
GUO A, CHEN W R, LI Q, et al. Modeling and control of thermal system of fuel cells for locomotive[ J] . Journal of system simulation, 2015, 27 ( 1 ) : 133 -141.
[9] XU J M, ZHANG C Z, FAN R J, et al. Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle [ J] . Energy, 2020, 199: 117495.
[10] CRISALLE O D, 韩闯, 吴莉莉, 等. 质子交换膜燃 料电池建 模 与 控 制 研 究 进 展 [ J] . 郑 州 大 学 学 报 (工学版) , 2015, 36(6) : 61-65. 
CRISALLE O D, HAN C, WU L L, et al. Review on modeling and control of proton exchange membrane fuel cell[ J] . Journal of Zhengzhou university ( engineering science) , 2015, 36(6) : 61-65.
[11] JIA Q H, HAN M, DENG B, et al. Proton exchange membrane fuel cell ( PEMFC ) lumped modeling and dynamic performance analysis[ J] . Advanced materials research, 2011(197 / 198) : 719-723. 
[12] 刘波, 赵锋, 李骁. 质子交换膜燃料电池热管理技 术的进展[ J] . 电池, 2018, 48(3) : 202-205. LIU B, ZHAO F, LI X. Review on thermal management technology of PEMFC [ J ] . Battery bimonthly, 2018, 48(3) : 202-205. 
[13] 张宝斌, 刘佳鑫, 李建功, 等. 燃料电池冷却方法 及热管理控制策略进展[ J] . 电池, 2019, 49( 2) : 158-162.
 ZHANG B B, LIU J X, LI J G, et al. Development of fuel cell cooling method and thermal management control strategy[ J ] . Battery bimonthly, 2019, 49 ( 2 ) : 158-162. 
[14] HU P, CAO G Y, ZHU X J, et al. Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells[ J] . International journal of hydrogen energy, 2010, 35(17) : 9110-9123.
[15] 谷靖, 卢兰光, 欧阳明高. 燃料电池系统热管理子 系统建模与温度控制[ J] . 清华大学学报( 自然科 学版) , 2007, 47(11) : 2036-2039. 
GU J, LU L G, OUYANG M G. Thermal management subsystem model and temperature control for fuel cells [ J] . Journal of Tsinghua university ( science and technology) , 2007, 47(11) : 2036-2039.
[16] ZHAO X Q, LI Y K, LIU Z X, et al. Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[ J] . International journal of hydrogen energy, 2015, 40(7) : 3048-3056.
[17] CHU K, RYU J, SUNWOO M. A lumped parameter model of the polymer electrolyte fuel cell[ J] . Journal of power sources, 2007, 171(2) : 412-423.
[18] 赵洪波, 刘杰, 马彪, 等. 水冷 PEMFC 热管理系统 控制策 略 及 仿 真 研 究 [ J ] . 化 工 学 报, 2020, 71 (5) : 2139-2150. 
ZHAO H B, LIU J, MA B, et al. Control strategy and simulation research of water-cooled PEMFC thermal management system [ J ] . CIESC journal, 2020, 71 (5) : 2139-2150.

更新日期/Last Update: 2022-07-03