[1]邓立宝,吴怡然,郭苏.基于分解多目标进化的椭圆定日镜场布局[J].郑州大学学报(工学版),2020,41(05):37-43.
点击复制

基于分解多目标进化的椭圆定日镜场布局()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年05期
页码:
37-43
栏目:
出版日期:
2020-10-01

文章信息/Info

Title:
Elliptical Heliostat Field Layout Optimization Based on MOEA/D
作者:
邓立宝吴怡然郭苏
文献标志码:
A
摘要:
针对塔式太阳能热电站中的定日镜场布局多目标优化问题 ,将基于分解的多目标进化算法(MOEA/D)应用于定日镜场布局领域,提出了基于改进的MOEA/D多目标定日镜场布局优化算法(MOEA/D-HFL)。首先建立了以镜场年均综合光学效率和镜场占地面积为目标的椭圓形定日镜场优化模型,接着将基于佳点集和反向学习的初始种群生成策略、目标函数稳定归一化机制以及动态遗传交叉分布指数引入MOEA/D用于求解该问题,获得了定日镜场布局问题的Pareto前沿,并利用模糊集理论获得了最优折中解。为验证所提算法的性能,将MOEA/D-HFL算法与NSGA-II和基本MOEA/D对比,仿真结果证明了MOEA/D-HFL在多目标定日镜场布局问题上的高效性与准确性。
Abstract:
To solve the multi-objective heliostat field layout optimization in solar power tower system, multi-objective evolutionary algorithm based on decomposition (MOEA/D) was introduced into the domain of helio-stat field layout, and a heliostat field layout optimization algorithm based on an improved MOEA/D (MOEA/D-HFL) was proposed in this paper. In this method, firstly an elliptical heliostat field model was set up aimedat optimizingannual-averaged overall optical efficiency and the land areaoccupied. Secondly, initialpopulation generation strategy based on good-point set and opposition-based learning, stable normalization ofobjectives and dynamic genetic crossover distribution index were applied into MOEA/D to solve this problem.Pareto front of heliostat field layout problem was obtained and optimal compromise solution was got throughfuzzy set theory. To validate the performance of the proposed algorithm, MOEA/D-HFL was compared with NSGA-II and original MOEA/D algorithms, and the simulation results confirmed the effectiveness andaccuracy of the proposed method.
更新日期/Last Update: 2020-10-23