[1]贾瑞娟,王钰翠,常春,等.Fe/Cu纳米复合材料对罗丹明B的吸附性能研究[J].郑州大学学报(工学版),2020,41(05):31-36.[doi:10.13705/j.issn.1671-6833.2020.05.003]
 JIA Ruijuan,WANG Yucui,CHANG Chun,et al.Adsorption Characteristics of Fe/Cu Nanocomposites to Rhodamine B[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):31-36.[doi:10.13705/j.issn.1671-6833.2020.05.003]
点击复制

Fe/Cu纳米复合材料对罗丹明B的吸附性能研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41卷
期数:
2020年05期
页码:
31-36
栏目:
出版日期:
2020-10-01

文章信息/Info

Title:
Adsorption Characteristics of Fe/Cu Nanocomposites to Rhodamine B
作者:
贾瑞娟王钰翠常春韩秀丽
郑州大学化工学院,河南郑州450001, 郑州大学化工学院,河南郑州450001, 河南省杰出外籍科学家工作室,河南郑州450001

Author(s):
JIA Ruijuan1 WANG Yucui1 CHANG Chun12 HAN Xiuli12
1.School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
关键词:
Keywords:
Rhodamine B Fe/Cu nanocomposites response surface methodology sweet potato leaf adsorption
DOI:
10.13705/j.issn.1671-6833.2020.05.003
文献标志码:
A
摘要:
以红薯叶提取物为原料绿色合成 Fe/Cu纳米复合材料,用其处理含有罗丹明B(RhB)的废水,并采用响应面法(RSM)对吸附时间、吸附剂用量、pH等吸附条件进行了优化。吸附平衡数据符合Sips等温模型,且热力学参数表明对罗丹明B的吸附过程是一个自发的吸热过程。准二级动力学模型能很好地描述Fe/Cu纳米复合材料对罗丹明B的吸附过程。在298K时,Fe/Cu纳米复合材料对罗丹明B的最大吸附量是484.18mg/g,表明Fe/Cu纳米复合材料在罗丹明B废水处理上有较好的应用前景。
Abstract:
Fe/Cu nanocomposites prepared from sweet potato leaves were investigated for the removal of Rhodamine B(RhB) from aqueous solution. The effects of various parameters such as adsorption time, adsorbent dosage and pH were optimized by response surface methodology (RSM). The adsorption equilibrium data were well fitted with Sips model, and the thermodynamic study indicated that the adsorption process was a spontaneous endothermic process. The pseudo-second order kinetics model could describe well the adsorption process of RhB onto Fe/Cu nanocomposites. At 298 K, the maximum adsorption capacity of Fe/Cu nanocomposites for RhB was 484.18 mg/g, indicating that Fe/Cu nanocomposites had a good application in RhB waste water treatment.

参考文献/References:

[1] 方芳,张璐璐,张明婷,等. 核桃壳吸附法去除水中罗丹明B的响应曲面优化及机理[J]. 净水技术, 2019, 38(2): 77-85.

[2] 刘琦,陈嘉磊,张启灵,等. 稻壳灰吸附剂对罗丹明B的吸附性能研究[J]. 化学研究与应用, 2019, 31(8): 1482-1491.
[3] 韩润平,房丽燕,李小钰,等. 聚乙烯亚胺负载四氧化三铁对刚果红的吸附性能[J]. 郑州大学学报(工学版), 2019, 40(2): 59-65.
[4] MICHAEL-KORDATOU I, KARAOLIA P, FATTA-KASSINOS D. The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater[J]. Water research, 2018, 129:208-230.
[5] BHUNIA S K, JANA N R. Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors[J]. ACS applied 
materials & interfaces, 2014, 6(22): 20085-20092.
[6] ZEC N, et al. Improved single-step extraction performance of aqueous biphasic systems using novel symmetric ionic liquids for the decolorisation of toxic dye effluents[J]. Journal of industrial and engineering chemistry, 2019, 76: 500-507.
[7] AHMAD R, GUO J, KIM J. Structural characteristics of hazardous organic dyes and relationship between membrane fouling and organic removal efficiency in fluidized ceramic membrane reactor[J]. Journal of cleaner production, 2019, 232: 608-616.
[8] WANG T, JIN X Y, CHEN Z L, et al. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater[J]. Science of the total environment, 2014, 466-467: 210-213.
[9] WEI Y F, FANG Z Q, ZHENG L C, et al. Biosynthesized iron nanoparticles in aqueous extracts of eichhornia crassipes and its mechanism in the hexavalent chromium removal[J]. Applied surface science, 2017, 399: 322-329.
[10] LUO F, YANG D, CHEN Z L, et al. The mechanism for degrading orange II based on adsorption and reduction by ion-based nanoparticles synthesized by grape leaf extract[J]. Journal of hazardous materials, 2015, 296: 37-45.
[11] ZHANG P, HOU D Y, O′CONNOR D, et al. Green and size-specific ssynthesis of stable Fe-Cu oxides as earth-abundant adsorbents for malachite green removal[J]. ACS sustainable chemistry & engineering, 2018, 6:9229-9236.
[12] SEBEIA N, JABLI M, GHITH A. Biological synthesis of copper nanoparticles, using nerium oleander leaves extract: characterization and study of their interaction with organic dyes[J]. Inorganic chemistry communications, 2019, 105: 36-46.
[13] CHEN X Y, LI H P, LIU W Y, et al. Effective removal of methyl orange and rhodamine B from aqueous solution using furfural industrial processing waste: furfural residue as an eco-friendly biosorbent[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2019, 583:123976.
[14] LIU X D, TIAN J F, LI Y Y, et al. Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon[J]. Journal of hazardous materials, 2019,373: 397-407.
[15] LIU Y. Is the free energy change of adsorption correctly calculated[J]. Journal of chemical & engineering data, 2009, 54(7): 1981-1985.

更新日期/Last Update: 2020-10-23