[1]潘公宇,徐 锐,杨晓峰.基于整车路面谱的副车架开裂台架试验及仿真[J].郑州大学学报(工学版),2024,45(01):29-33.[doi:10.13705/j.issn.1671-6833.2023.04.008]
 PAN Gongyu,XU Rui,YANG Xiaofeng.Sub-frame Crack Rig Testing and Simulation Analysis Based on Full-vehicle Rough Road Spectrum[J].Journal of Zhengzhou University (Engineering Science),2024,45(01):29-33.[doi:10.13705/j.issn.1671-6833.2023.04.008]
点击复制

基于整车路面谱的副车架开裂台架试验及仿真()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年01期
页码:
29-33
栏目:
出版日期:
2024-01-19

文章信息/Info

Title:
Sub-frame Crack Rig Testing and Simulation Analysis Based on Full-vehicle Rough Road Spectrum
作者:
潘公宇 徐 锐 杨晓峰
1. 江苏大学 汽车与交通工程学院,江苏 镇江 212013; 2. 恒大新能源汽车全球研究总院,上海 201620
Author(s):
PAN Gongyu XU Rui YANG Xiaofeng
1. School of Automobile and Traffic Engineering,Jiangsu University, Zhenjiang 212013,China; 2. Evergrande New Energy Automotive R&D Institute Global Headquarters, Shanghai 201620, China
关键词:
台架试验 耐久 虚拟迭代 疲劳仿真 相关性
Keywords:
rig test durability virtual iteration fatigue simulation correlation
DOI:
10.13705/j.issn.1671-6833.2023.04.008
文献标志码:
A
摘要:
针对前悬架稳定杆与副车架连接处在整车试验场耐久测试过程中出现的疲劳破坏问题,通过对稳定杆进 行贴片标定,获得了试验场环境下稳定杆的连杆力和稳定杆扭转相对位移的强化耐久路谱,设计搭建了稳定杆副 车架系统的物理台架,并按照耐久性规范进行了台架试验。 试验结果表明:该台架试验装置能良好地再现整车耐 久路试下的断裂位置,疲劳寿命相对于整车耐久路试的疲劳寿命偏差仅为 2. 5%。 在此基础上,建立了稳定杆与副 车架多体的仿真模型,设定了与系统试验台架相同的约束边界,通过虚拟迭代的方法及准静态有限元疲劳寿命分 析法对系统进行了仿真分析。 仿真得到稳定杆连杆力和稳定杆扭转相对位移信号,与测试结果进行对比分析可以 看出,时域下相位和幅值重合度良好,频域下的 PSD 谱重合度较高,穿级计数载荷统计基本一致,载荷相对损伤均 在 1 附近,相关风险位置处的仿真疲劳寿命与整车耐久试验寿命偏差比为 6. 25%,获得了较高精度的风险位置载 荷,实现了耐久风险位置的复现。 最后,基于仿真模型对副车架风险位置处进行了结构优化设计,改进后的方案顺 利通过了后续的台架试验和整车耐久路试
Abstract:
The study was conducted to examine the durability issue occurred in front stabilizer bar bracket connected to sub-frame in full vehicle testing. Firstly, stabilizer bar system was plastered with strain gauges and calibrated, and drop link force and stabilizer bar twist displacement acquired on proving ground, sub-frame with stabilizer bar system physical test rig was designed and built, and rig tests in accordance with durability specifications were conducted. The test results showed that built physical test rig could greatly reappear crack location in full vehicle testing, the fatigue life of the physical bench had a deviation of 2. 5% compared to full vehicle testing. Based on this, a stabilizer bar and sub-frame multi-body virtual model was built with the same constraint boundary and the same loading method of the physical test rig. Then CAE fatigue simulation was used through quasi-static finite element fatigue life analysis method to reappear related area risk. The simulation results showed that phase and amplitude had a good coincidence in time domain, the PSD spectrum also had a good accuracy in frequency domain, the relative damage was almost closed to 1 with the comparison between the simulation and test in droplink force and stabilizer bar relative displacement. The deviation between the simulated fatigue life at the relevant risk position and the test life of the full vehicle was 6. 25%. A higher accuracy risk position load was obtained, and the reappearance of durability risk position was achieved. Finally, based on simulation fatigue load, the optimization risk structure was evaluated. Optimized proposal eventually passed the test rig and full vehicle testing successfully.

参考文献/References:

[1] 周德生, 吴奕东, 胡浩炬, 等. 后副车架台架耐久开裂分析及结构优化[J]. 机械强度, 2021, 43(6): 1510-1514.ZHOU D S, WU Y D, HU H J, et al. Analysis of durable cracking and structure optimization of rear sub-frame[J]. Journal of Mechanical Strength, 2021, 43(6): 1510-1514.

[2] 孙成智, 段向雷, 翁洋, 等. 基于3D数字路面的整车耐久性能评价方法研究[J]. 汽车工程, 2017, 39(10): 1211-1216.SUN C Z, DUAN X L, WENG Y, et al. A study on the evaluation method of vehicle durability performance based on 3D digital road[J]. Automotive Engineering, 2017, 39(10): 1211-1216.
[3] 陆森林, 许静超. 基于虚拟样机技术的汽车前悬架优化[J]. 郑州大学学报(工学版), 2014, 35(2): 124-128.LU S L, XU J C. Optimization of front suspension of vehicle based on virtual-pototype-technology[J]. Journal of Zhengzhou University (Engineering Science), 2014, 35(2): 124-128.
[4] 王冬成, 潘筱. 后横向稳定杆对汽车不足转向性能的影响[J]. 郑州大学学报(工学版), 2012, 33(6): 68-70.WANG D C, PAN X. Influence of rear anti-roll bar on vehicle under-steer performance[J]. Journal of Zhengzhou University (Engineering Science), 2012, 33(6): 68-70.
[5] 付春雨, 曾超, 刘宏杰, 等. 基于虚拟迭代的装载机后处理支架载荷谱获取方法[J]. 现代制造工程, 2021(1): 17-21.FU C Y, ZENG C, LIU H J, et al. Obtaining load spectrum method of loader′s post-processing bracket based on virtual iteration[J]. Modern Manufacturing Engineering, 2021(1): 17-21.
[6] 吴泽勋, 张林波, 孟凡亮, 等. 基于虚拟迭代的轿车车身耐久性虚拟试验方法[J]. 计算机辅助工程, 2014, 23(6): 37-40.WU Z X, ZHANG L B, MENG F L, et al. Virtual test method of car body durability based on virtual iteration[J]. Computer Aided Engineering, 2014, 23(6): 37-40.
[7] 惠延波, 王宏晓, 冯兰芳, 等. 基于MSC.fatigue的某轻型客车车架疲劳寿命分析[J]. 郑州大学学报(工学版), 2013, 34(1): 87-90.HUI Y B, WANG H X, FENG L F, et al. Fatigue analysis for light-bus frame based on MSC.fatigue[J]. Journal of Zhengzhou University (Engineering Science), 2013, 34(1): 87-90.
[8] 许期英, 钟自锋. 汽车横向稳定杆疲劳寿命分析及其优化设计[J]. 机械强度, 2019, 41(5): 1228-1232.XU Q Y, ZHONG Z F. Fatigue life analysis and optimization design of vehicle horizontal stabilizer bar[J]. Journal of Mechanical Strength, 2019, 41(5): 1228-1232.
[9] 朱剑峰, 林逸, 张涛, 等. 基于虚拟台架疲劳分析的副车架结构改进设计[J]. 汽车工程, 2014, 36(5): 630-634.ZHU J F, LIN Y, ZHANG T, et al. Modification design of subframe structure based on virtual rig fatigue analysis[J]. Automotive Engineering, 2014, 36(5): 630-634.

更新日期/Last Update: 2024-01-23