[1]朱媛媛,王笑梅.热局部非平衡流体多孔弹性平面的非线性研究[J].郑州大学学报(工学版),2020,41(06):60-65.[doi:10.13705/j.issn.1671-6833.2020.04.012]
 ZHU Yuanyuan,WANG Xiaomei.Nonlinear Study on Fluid Porous Elastic Half-plane Based on Local Thermal Non-equilibrium[J].Journal of Zhengzhou University (Engineering Science),2020,41(06):60-65.[doi:10.13705/j.issn.1671-6833.2020.04.012]
点击复制

热局部非平衡流体多孔弹性平面的非线性研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年06期
页码:
60-65
栏目:
出版日期:
2020-12-31

文章信息/Info

Title:
Nonlinear Study on Fluid Porous Elastic Half-plane Based on Local Thermal Non-equilibrium
作者:
朱媛媛王笑梅
上海师范大学信息与机电工程学院,上海200234, 上海师范大学信息与机电工程学院,上海200234

Author(s):
ZHU Yuanyuan WANG Xiaomei
The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
关键词:
Keywords:
porous media theory(PMT) fluid-saturated porous thermo-elastic half-plane geometric nonlinearity local thermal non-equilibrium differential quadrature method (DQM) thermodynamic characteristics
DOI:
10.13705/j.issn.1671-6833.2020.04.012
文献标志码:
A
摘要:
在几何非线性和热局部非平衡条件下,对不可压流体饱和多孔热弹性半平面在受到表面温度载荷作用下的热动力学特性进行了研究。首先基于多孔介质混合物理论,考虑几何非线性和热局部非平衡条件的影响,给出了问题的数学模型。然后提出了一种综合数值计算方法来求解问题,该方法通过微分求积法和二阶后向差分格式分别在空间域和时间域离散数学模型,利用Newton-Raphson法求解非线性代数方程组,从而可得到问题的数值结果。研究表明,求解方法是有效可靠的,且具有计算量小、精度高等优点。最后,研究了流体饱和多孔热弹性半平面在表面温度载荷作用下的热力学特性,详细考虑了材料参数、热局部非平衡条件和几何非线性的影响。
Abstract:
In the case of geometric nonlinearity and local thermal non-equilibrium, thermodynamic characteristics for an incompressible fluid-saturated porous thermo-elastic half-plane subjected to a surface temperature loading were studied. Firstly, the mathematical model of problem was established based on the Porous Media Theory. Then a synthetical numerical computation method was presented to simulate the numerical results of problem, in which, the differential quadrature method and the second-order backward difference scheme were applied to discretize mathematical model on the spatial and time domain, respectively. The Newton-Raphson iterative method was finally used to solve the nonlinear algebraic equations and to present the numerical results of the problem. The study pointed out that the solution method was effective and reliable. The advantages of the presented method, such as little calculated amount and high accuracy, could be proved. Finally, the thermodynamics characteristics for a fluid-saturated porous thermo-elastic half-plane subjected to the surface temperature loadings were studied, the effects of material parameters and geometric nonlinearity on the dynamic characteristics were considered in detail.

参考文献/References:

[1] BIOT M A.Theory of elasticity and consolidation for a porous anisotropic solid[J].Journal of applied physics, 1955,26(2):182-185.

[2] ZHOU Y,RAJAPAKSE R K N D,GRAHAM J.A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration[J].International journal of solids and structures, 1998,35(34/35):4659-4683.
[3] 白冰.循环温度荷载作用下饱和多孔介质热-水-力耦合响应[J].工程力学,2007,24(5):87-92.
[4] 毕苏萍,时刚,高广运.饱和地基上铁路交通引起的地面振动分析[J].郑州大学学报(工学版),2010,31(3):73-76.
[5] De BOER R.Theoretical poroelasticity:a new approach[J].Chaos,solitons & fractals, 2005,25(4):861-878.
[6] De BOER R,EHLERS W,LIU Z F.One-dimensional transient wave propagation in fluid-saturated incompressible porous media[J].Archive of applied mecha-nics, 1993,63(1):59-72.
[7] HEIDER Y,MARKERT B,EHLERS W.Dynamic wave propagation in infinite saturated porous media half spaces[J].Computational mechanics, 2012,49(3):319-336.
[8] DE BOER R,KOWALSKI S J.Thermodynamics of fluid-saturated porous media with a phase change[J].Acta mechanica, 1995,109(1/2/3/4):167-189.
[9] HE L W,JIN Z H.A local thermal nonequilibrium poroelastic theory for fluid saturated porous media[J].Journal of thermal stresses, 2010,33(8):799-813.
[10] YANG X. Gurtin-type variational principles for dynamics of a non-local thermal equilibrium saturated porous medium [J]. Acta mechanica solida sinica, 2005, 18(1): 37-45.
[11] 朱媛媛,胡育佳,程昌钧,等.基于DQM的空间轴对称流体饱和多孔热弹性柱体动力学特性研究[J].振动与冲击,2017,36(23):83-91.
[12] BELLMAN R,CASTI J.Differential quadrature and long-term integration[J].Journal of mathematical analysis and applications, 1971,34(2):235-238.
[13] BELLMAN R,KASHEF B,CASTI J.Differential quadrature:a technique for the rapid solution of nonlinear partial differential equations[J].Journal of computational physics, 1972,10(1):40-52.
[14] 程昌钧,朱正佑.微分求积方法及其在力学应用中的若干新进展[J].上海大学学报(自然科学版),2009,15(6):551-559.
[15] 聂国隽,仲政.用微分求积法求解梁的弹塑性问题[J].工程力学,2005,22(1):59-62,27.

更新日期/Last Update: 2021-02-10