[1]张振,刘艳红.基于特征值的单机无穷大电力系统随机稳定性分析[J].郑州大学学报(工学版),2018,39(04):58-63.[doi:10.13705/j.issn.1671-6833.2018.04.001]
Zhang Zhen,Liu Yanhong.Stochastic Small Signal Stability of Single Machine Infinite Bus Power Stytems Based on Matrix Eigenvalue Analysis[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):58-63.[doi:10.13705/j.issn.1671-6833.2018.04.001]
点击复制
基于特征值的单机无穷大电力系统随机稳定性分析()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
39
- 期数:
-
2018年04期
- 页码:
-
58-63
- 栏目:
-
- 出版日期:
-
2018-07-22
文章信息/Info
- Title:
-
Stochastic Small Signal Stability of Single Machine Infinite Bus Power Stytems Based on Matrix Eigenvalue Analysis
- 作者:
-
张振; 刘艳红
-
郑州大学 电气工程学院,河南 郑州,450001
- Author(s):
-
Zhang Zhen; Liu Yanhong
-
School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001
-
- 关键词:
-
随机扰动; 单机无穷大电力系统; 矩阵特征值; 均值稳定; 均方稳定
- Keywords:
-
Random disturbance; Single machine infinite power system; Matrix eigenvalue; The mean stability; The mean square stability
- DOI:
-
10.13705/j.issn.1671-6833.2018.04.001
- 文献标志码:
-
A
- 摘要:
-
考虑系统参数与随机扰动强度以及两者之间约束关系,分析了随机扰动下单机无穷大电力系统的稳定性。根据系统系数矩阵特征值的三种不同情况,讨论了随机系统均值稳定和均方稳定性,证明了如果无随机扰动电力系统局部渐近稳定,则在随机小扰动下系统是均值稳定和均方稳定,并给出了系统均值均方差的界与随机扰动强度及系统参数之间的关系式。 最后,对随机扰动作用下的单机无穷大电力系统进行仿真分析,验证了结论的正确性。
- Abstract:
-
The stochastic small signal stability of single machine infinite bus power systems was investigated with consideration of the relationship between the system parameters and the stochastic disturbance in this paper. Firstly, according to the three different characteristics of the eigenvalues of the system coeffcient matrix, the mean stability and mean and square stability were discussed. It was showen that if the power system was asymptotically stable under no stochastic disturbance. Its mean stable and mean were aquare stable under small stochastic disturbance. The function of the bound of mean and mean square value with respect to the variance and random perturbation relation between stochastic intensity and system parameters was given. Finally, the powersystm was simulated under different stochastic intensity and the correctness of the proposed results was verified.
更新日期/Last Update:
2018-07-26