[1]任 亮,刘青云,方博文,等.高强钢筋增强 UHPC-NC 组合桥墩塑性铰长度[J].郑州大学学报(工学版),2023,44(06):119-126.[doi:10.13705/j.issn.1671-6833.2023.03.016]
 REN Liang,LIU Qingyun,FANG Bowen,et al.Plastic Hinge Length of UHPC-NC Hybrid Pier Reinforced by High-strength Steel Bars[J].Journal of Zhengzhou University (Engineering Science),2023,44(06):119-126.[doi:10.13705/j.issn.1671-6833.2023.03.016]
点击复制

高强钢筋增强 UHPC-NC 组合桥墩塑性铰长度()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年06期
页码:
119-126
栏目:
出版日期:
2023-12-25

文章信息/Info

Title:
Plastic Hinge Length of UHPC-NC Hybrid Pier Reinforced by High-strength Steel Bars
作者:
任 亮12 刘青云1 方博文1 温 帅1
1. 华东交通大学 土木建筑学院,江西 南昌 330013;2. 华东交通大学 轨道交通基础设施性能监测与保障国家重点 实验室,江西 南昌 330013
Author(s):
REN Liang LIU Qingyun FANG Bowen WEN Shuai
1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China; 2. State Key Laboratory of Performance Monitoring Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China
关键词:
塑性变形能力 UHPC-NC 组合桥墩 ABAQUS 高强钢筋 塑性铰长度 延性分析模型
Keywords:
plastic deformation ability UHPC-NC hybrid pier ABAQUS high-strength steel bars plastic hinge length ductility analysis model
分类号:
TU377;U24
DOI:
10.13705/j.issn.1671-6833.2023.03.016
文献标志码:
A
摘要:
为探讨高强钢筋增强 UHPC-NC 组合桥墩塑性变形能力,应用大型有限元程序 ABAQUS,结合 Mander 本构 模型、双折线本构模型、UHPC 材料本构关系和混凝土损伤塑性模型,建立了高强钢筋增强 UHPC-NC 组合桥墩延 性分析模型,通过与不同 UHPC 加固高度的钢筋混凝土桥墩和不同加载角度下 UHPC 箱型桥墩拟静力试验结果对 比验证了模型的有效性。 在此基础上,进一步提出塑性铰区域长度确定方法,探讨轴压比、纵筋直径、纵筋屈服强 度以及试件高度等参数对组合桥墩塑性铰区域长度的影响规律,评估规范塑性铰长度建议公式的适用性,建立了 UHPC-NC 组合桥墩等效塑性铰长度计算公式。 结果表明:组合桥墩塑性铰区域长度随轴压比增大单调递减,随试 件高度的增大单调递增,随纵筋直径和屈服强度的增大表现出先增大后减小的变化趋势;当轴压比接近 0. 5 时, UHPC 的破坏与受拉区纵筋的屈服同步发生,当纵筋直径和屈服强度分别为 16 mm、500 MPa 时,墩底塑性铰区域 耗能能力达到最优。 与数值分析结果的对比进一步表明:规范建议的计算公式在一定程度上将低估组合桥墩的塑 性变形能力,建立的等效塑性铰回归公式可为高强钢筋增强 UHPC-NC 组合桥墩抗震研究提供参考。
Abstract:
To discuss the plastic deformation ability of UHPC-NC hybrid pier reinforced by high-strength steel bars, a ductility analysis model was established and calibrated by the corresponding pseudo-static test of concrete piers strengthened with different UHPC reinforcement heights and UHPC box piers with different loading angles, with the involving in the constitutive model of Mander and double line, the constitutive relationship of UHPC material and the damage plastic model of concrete in the finite element program ABAQUS. Based on the validation of the test results, the method on determining the length of the plastic zone was proposed, and the parameter analysis varying in the axial compression ratio, the diameter and yield strength of the longitudinal reinforcement, and the height of the specimen was conducted. On the basis of the applicability of the proposed formula in the evaluating code, the formula for calculating the equivalent plastic hinge length of hybrid pier was established. The results showed that, the length of plastic zone for UHPC-NC hybrid pier reinforced by high-strength steel bars would decrease with the increase of axial compression ratio, increased firstly and then decreased with the diameter of the longitudinal reinforcement and longitudinal reinforcement yield strength, and increased with the increase of the specimen height. When the axial compression ratio was close to 0. 5, the failure of UHPC occurred simultaneously with the yield of longitudinal bars in the tensile zone. When the longitudinal reinforcement diameter and yield strength were 16 mm and 500 MPa, the energy dissipation capacity of the plastic zone reached the optimum. By comparing with the numerical analysis results, it was further shown that the empirical formulas underestimated the plastic deformation ability of UHPC-NC hybrid pier. The established equivalent plastic hinge regression formula could provide a reference for the seismic research of UHPC-NC hybrid pier reinforced by high-strength steel bars.

参考文献/References:

[1] 赵卓, 耿佳硕, 王建强. 采用 UHPC 材料连接的装配 式桥墩抗震性能研究[ J] . 郑州大学学报( 工学版) , 2021, 42(2) : 13-18. 

ZHAO Z, GENG J S, WANG J Q. Study on seismic performance of prefabricated pier connected by UHPC [ J] . Journal of Zhengzhou University ( Engineering Science) , 2021, 42(2) : 13-18. 
[2] 郑七振, 刘阳阳, 龙莉波, 等. 超高性能混凝土连接 的装配式现浇混凝土框架抗震性能 [ J] . 工业建筑, 2019, 49(10) : 85-91. 
ZHENG Q Z, LIU Y Y, LONG L B, et al. Experimental research on seismic behavior of precast concrete frame connected with uhpc[ J] . Industrial Construction, 2019, 49(10) : 85-91. 
[3] TONG T, YUAN S Q, ZHUO W D, et al. Seismic retrofitting of rectangular bridge piers using ultra-high performance fiber reinforced concrete jackets [ J ] . Composite Structures, 2019, 228: 111367. 
[4] 孟庆利. 分段 SFC 预制壳壁抗震加固 RC 墩柱设计方 法与效验 [ J] . 中 国 公 路 学 报, 2017, 30 ( 12) : 178 -186. 
MENG Q L. Design method and efficacy of RC pier columns seismically strengthened with precast SFC shell segments [ J ] . China Journal of Highway and Transport, 2017, 30(12) : 178-186. 
[5] SHAN B, LIU G, LI T Y, et al. Experimental research on seismic behavior of concrete-filled reactive powder concrete tubular columns [ J ] . Engineering Structures, 2021, 233: 111921. 
[6] REN L, FANG B W, WANG K, et al. Numerical investigation on plastic hinge length of ultra-high performance concrete column under cyclic load[ J] . Journal of Earthquake Engineering, 2022, 26(3) : 1281-1299.
 [7] 赵毅, 段松甫, 牛中浩. 钢管混凝土异形柱-钢梁节点 恢复力模型研究[ J] . 郑州大学学报(工学版) , 2022, 43(6) : 104-110. 
ZHAO Y, DUAN S F, NIU Z H. Research on restoring force modeling of concrete-filled steel tubular specialshaped column-steel beam nodes [ J] . Journal of Zhengzhou University ( Engineering Science) , 2022, 43 ( 6) : 104-110. [8] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[ J] . Journal of Structural Engineering, 1988, 114(8) : 1804-1826. 
[9] ZHAO J, SRITHARAN S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[ J] . ACI Structure Journal, 2007, 104 ( 2) : 133 -141. 
[10] 邓宗才, 姚军锁. 高强钢筋约束超高性能混凝土柱轴 心受压本构模型研究[ J] . 工程力学, 2020, 37( 5) : 120-128. 
DENG Z C, YAO J S. The axial compression stress-strain model for ultra-high performance concrete columns confined by high-strength stirrups[ J] . Engineering Mechanics, 2020, 37(5) : 120-128.
 [11] 原海燕, 安明喆, 贾方方, 等. 活性粉末混凝土轴拉 性能试验研究[ J] . 工程力学, 2011, 28(增刊 1) : 141 -144. YUAN H Y, AN M Z, JIA F F, et al. Experimental research on uniaxial tensile performance of reactive powder concrete[ J] . Engineering Mechanics, 2011, 28 ( S1) : 141-144. 
[12] 方自虎, 周海俊, 赖少颖, 等. 循环荷载下钢筋混凝 土 ABAQUS 黏结滑移单元[ J] . 武汉大学学报( 工学 版) , 2014, 47(4) : 527-531. 
FANG Z H, ZHOU H J, LAI S Y, et al. ABAQUS bondslip element of reinforced concrete under cyclic loads[ J] . Engineering Journal of Wuhan University, 2014, 47(4) : 527-531.
 [13] ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationship of deformed bars under generalized excitations [ R] . California :University of California, 1983. 
[14] REN L, FANG Z, ZHONG R, et al. Experimental and numerical investigations of the seismic performance of UHPC box piers[ J] . KSCE Journal of Civil Engineering, 2019, 23(2) : 597-607. 
[15] PAULAY T, PRIESTLY M J N. Seismic design of reinforced concrete and masonry buildings [ M ] . Hoboken: John Wiley & Sons, Inc. , 1992. 
[16] PRIESTLEY M J N, PARK R. Strength and ductility of concrete bridge columns under seismic loading [ J] . ACI Structural Journal, 1987, 84(1) : 61-76.
 [17] HINES E M, RESTREPO J I, SEIBLE F. Force-displacement characterization of well-confined bridge piers [ J] . ACI Structural Journal, 2004, 101(4) : 537-548. 
[18] PANAGIOTAKOS T B, FARDIS M N. Deformations of reinforced concrete members at yielding and ultimate[ J] . ACI Structural Journal, 2001, 98(2) : 135-148.

更新日期/Last Update: 2023-10-22