ZHANG Jinping,ZHANG Zhaoyang,ZUO Qiting.Urban Waterlogging Simulation and Emergency Response Capacity Evaluation with Extreme Rainstorms[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):30-37.[doi:10.13705/j.issn.1671-6833.2023.02.020]





Urban Waterlogging Simulation and Emergency Response Capacity Evaluation with Extreme Rainstorms
1. 郑州大学 水利与土木工程学院,河南 郑州 450001; 2. 郑州大学 黄河生态保护与区域协调发展研究院,河南 郑 州 450001)
ZHANG Jinping ZHANG Zhaoyang ZUO Qiting
Zhengzhou University School of Water Conservancy and Civil Engineering, Henan Zhengzhou 450001, Zhengzhou University Yellow River Ecological Protection and Regional Institute, Henan Zhengzhou 450001, School of Water Conservancy and Civil Engineering, Zhengzhou University, 450001, Zhengzhou, Henan

极端暴雨 城市内涝 管网排水能力 可达范围 应急响应时间
extreme rainstorm urban waterlogging drainage capacity reachable area emergency response time
O352; P426. 616
为探究极端暴雨对城市内涝积水特征和应急响应能力的影响,基于 InfoWorks ICM 模型构建郑州市金水区 的某片区内涝模型,分析极端暴雨情景下的城市管网排水能力和内涝积水特征,基于 ArcGIS 网络分析模块评估公 安、医疗和消防 3 类应急服务部门在单一和组合情景下的可达范围和响应时间,以此确定城市应急响应能力。 结 果表明:研究区管网排水能力整体较低,排水能力<3 a 一遇的设计暴雨( 3 a 一遇,下同) 的管道占比为 50. 15%,此 类管道多分布于中部和南部,不能满足城市重要地区 3 ~ 5 a 的排水标准;淹没范围与管网排水能力和地表类型有 着密切的联系,在较大除涝标准下,如 20 a 一遇和 100 a 一遇情景下积水呈现出南多北少的分布特征,而郑州 2021 年“7·20”特大暴雨情景下,北部和河流附近地区的积水面积较大;应急车辆涉水能力较高的服务部门在极端暴雨 下的应急响应能力更高,100 a 一遇和“7·20”情景下消防部门的响应能力最高,10 min 内可达范围占比分别为 78% 和 36%;多部门联合调度可有效提升应急响应能力,如 100 a 一遇情景下,5、10、15 min 内联合调度的应急响应可达 范围比最优部门(同一时间阈值下可达范围占比最大的部门)分别增加了 16%、7%、4%。
In order to explore the impact of extreme rainstorms on urban waterlogging characteristics and emergency response capacity, a urban waterlogging model for a certain area in Jinshui District of Zhengzhou city, was developed based on InfoWorks ICM model, and the drainage capacity and waterlogging characteristics of urban pipe network with extreme rainstorm were analyzed. Application with ArcGIS network analysis module, the emergency reachable range and response time of public security, medical treatment and fire protection departments were evaluated to determine the whole city′s emergency response capacity. The results showed that the drainage capacity in the study area was lower wholly, and the proportion of pipes with drainage capacity less than 3 a was 50. 15%, which were mostly distributed in the middle and south and could not meet the drainage standard of 3 ~ 5 years in important areas. Meanwhile, the inundation area was closely related to the drainage capacity and the underlying characteristics. The accumulated water showed the distribution characteristics of more in the south and less in the north under the larger standard of waterlogging control such as 20 a and 100 a, while more water area appeared in the north and near the river with “7·20” rainstorm. The emergency service department with higher emergency vehicle wading ability owned higher emergency response ability in extreme rainstorm, the fire department had the highest response ability in 100 a and “7·20” rainstorm scenarios, and the reachable area in 10 min accounted for 78% and 36%, respectively. Moreover, the joint multi-department regulation could effectively improve the emergency response capability. For example, compared with the best department( he department with the largest proportion of reachable range with the same time threshold) , the emergency reachable area of joint multi-department regulation increased by 16%, 7%, and 4%, respectively in 5, 10, and 15 min with the 100 year rainstorm.


[1] 刘家宏, 裴羽佳, 梅超, 等. 郑州“ 7·20” 特大暴雨内 涝成因及 灾 害 防 控 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023, 44(2) : 38-45. 

LIU J H, PEI Y J, MEI C, et al. Waterlogging cause and disaster prevention and control of " 7·20" torrential rain in Zhengzhou [ J] . Journal of Zhengzhou University (Engineering Science) , 2023, 44(2) : 38-45. 
[2] JIANG R G, WANG Y P, XIE J C, et al. Assessment of extreme precipitation events and their teleconnections to El Niño Southern Oscillation, a case study in the Wei River Basin of China[ J] . Atmospheric Research, 2019, 218: 372-384. 
[3] PRATHIPATI V K, NAIDU C V, KONATHAM P. Inconsistency in the frequency of rainfall events in the Indian summer monsoon season[ J] . International Journal of Climatology, 2019, 39(13) : 4907-4923. 
[4] WU X H, CAO Y R, XIAO Y, et al. Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics[ J] . Annals of Operations Research, 2020, 290(1) : 865-896. 
[5] DING J Y, CAI J F, GUO G X, et al. An emergency decision-making method for urban rainstorm water-logging: a China study[ J] . Sustainability, 2018, 10(10) : 3453.
 [6] 国务院灾害调查组. 河南郑州“ 7·20” 特大暴雨灾害 调查报 告 [ R / OL] . ( 2021 - 01 - 21) [ 2022 - 08 - 13] . https: / / www. mem. gov. cn / gk / sgcc / tbzdsgdcbg / . 
The State Council of The People′s Republic of China. Investigation reprort of “7·20” catastrophic rainstorm disaster in Zhengzhou, Henan Province[ R / OL] . ( 2021- 01- 21) [ 2022 - 08 - 13 ] . https: / / www. mem. gov. cn / gk / sgcc / tbzdsgdcbg / . 
[7] 刘曙光, 郑伟强, 周正正, 等. 极端暴雨下城市地下 空间洪涝风险及灾害防控[ J] . 郑州大学学报( 工学 版) , 2023, (44)2: 22-29. 
LIU S G, ZHENG W Q, ZHOU Z Z, et al. Flood risk and control in urban underground spaces under extreme rainfall[ J] . Journal of Zhengzhou University ( Engineering Science) , 2023, (44)2: 22-29.
 [8] 俞茜, 李娜. 不同降雨特征下低影响开发的降雨径流 控制效 果 研 究 进 展 [ J ] . 水 电 能 源 科 学, 2021, 39 (8) : 18-21, 9. 
YU Q, LI N. Research progress of effects of low impact development on rainfall runoff reduction under different rainfall characteristics[ J] . Water Resources and Power, 2021, 39(8) : 18-21, 9.
 [9] COLES D, YU D P, WILBY R L, et al. Beyond ‘ flood hotspots′: modelling emergency service accessibility during flooding in York, UK [ J ] . Journal of Hydrology, 2017, 546: 419-436. 
[10] ARRIGHI C, PREGNOLATO M, DAWSON R J, et al. Preparedness against mobility disruption by floods[J]. Science of the Total Environment, 2019, 654: 1010-1022. 
[11] 邵蕊, 邵薇薇, 苏鑫, 等. 基于 TELEMAC-2D 模型分 析不同洪涝情景对城市应急响应时间的影响[ J] . 清 华大学学报(自然科学版) , 2022, 62(1) : 60-69. SHAO R, SHAO W W, SU X, et al. Impact of various flood scenarios on urban emergency responses times based on the TELEMAC-2D model[J]. Journal of Tsinghua University (Science And Technology), 2022, 62(1): 60-69. 
[12] 许拯民, 荆燕燕. 关于城市暴雨强度公式推求的研究 [ J] . 水文, 2014, 34(3) : 53-56.
 XU Z M, JING Y Y. Derivation of urban storm intensity formula[ J] . Journal of China Hydrology, 2014, 34( 3) : 53-56. 
[13] 叶陈雷, 徐宗学, 雷晓辉, 等. 基于 InfoWorks ICM 的 城市洪涝模拟及其风险分析: 以福州市白马河片区为 例[ J] . 北京师范大学学报( 自然科学版) , 2021, 57 (6) : 784-793. 
YE C L, XU Z X, LEI X H, et al. InfoWorks ICM flood simulation and risk analysis: case of Baima River District, Fuzhou [ J] . Journal of Beijing Normal University (Natural Science) , 2021, 57(6) : 784-793. 
[14] ZHANG J P, ZHANG H R, FANG H Y. Urban waterlogging simulation and rainwater pipe network system evaluation based on SWMM and SCS method [ J ] . South-tonorth Water Transfers and Water Science & Technology, 2022, 20(1) : 110-121.
 [15] 钟少颖, 杨鑫, 陈锐. 层级性公共服务设施空间可达 性研究: 以北京市综合性医疗设施为例[ J] . 地理研 究, 2016, 35(4) : 731-744. 
ZHONG S Y, YANG X, CHEN R. The accessibility measurement of hierarchy public service facilities based on multi-mode network dataset and the two-step 2SFCA: a case study of Beijing′s medical facilities [ J] . Geographical Research, 2016, 35(4) : 731-744.
 [16] 杜磊, 杨晓宽. 不同道路积水情况对交通影响及造成 损失的研究[C] / / 第十一次全国城市道路交通学术会 议论文集. 大连:中国土木工程学会, 2011: 389-393. 
DU L, YANG X K. Study on traffic impact and loss caused by different road ponding[C] / / Proceedings of the 11th Na


 LIU Shuguang,ZHENG Weiqiang,ZHOU Zhengzheng,et al.Flood Risk and Control in Urban Underground Spaces with Extreme Rainfall[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):22.[doi:10.13705/j.issn.1671-6833.2023.02.017]

更新日期/Last Update: 2023-02-25